www.jmolecularsci.com

ISSN:1000-9035

Development, Standardization And Pharmacological Screening Of Nano Gel (Extraction From Crocus Sativus) Herbal Formulation Against Wound

Ankur Tripathi¹, Anand Chaurasiya², Dharmendra Singh Rajput³, Naveen Gupta⁴, Brajesh Sirohi⁵

¹Research Scholar, Madhyanchal Professional University (School of Pharmacy), Bhopal, M.P.
 ²Professor, Madhyanchal Professional University (School of Pharmacy) Bhopal, M.P.
 ³Professor, Madhyanchal Professional University (School of Pharmacy) Bhopal, M.P.
 ⁴Principal, Patel college of Pharmacy, (MPU) Bhopal, M.P.
 ⁵Professor, Madhyanchal Professional University (School of Pharmacy) Bhopal, M.P.

Article Information

Received: 12-08-2024 Revised: 08-09-2024 Accepted: 01-10-2024 Published: 08-11-2024

Keywords

Saffron extract, Gel formulation, physicochemical properties, phytochemical analysis

ABSTRACT

This study investigates the formulation, evaluation, and characterization saffron extract-based gels, emphasizing their organoleptic, physicochemical, and phytochemical properties. Saffron, a prized botanical with rich sensory attributes, was explored for its chemical composition, including the presence of compounds such as steroids, triterpenoids, saponins, tannins, and proteins. The formulation process involved blending saffron extract with various excipients, including Tween 80, Carbomer 934, and Polyvinyl alcohol, across ten different formulations (S-1 to S-10). These formulations were evaluated for evaluation of Nanoparticle (Average Particle Size, Polydispersity Index, Size Distribution range) and Nanogel dosage form for Physicochemical Evaluation (pH, Spreadability, Extrudability, Appearance, Homogeneity, Viscosity, Entrapment Efficiency, Percentage Yield of Nanogel, Drug Loading) and In vitro diffusion study. Results indicated that formulations S5 and S7 are the best saffron nanogel formulations overall, according to the particle size, PDI, and size distribution data. Further Viscosity, which controls the flow and skin retention of the nanogel, was found to be in the ideal range for S5 and S7, which is roughly 13,980-14,200 cP. The best formulations, S5 (6.3 mm) and S7 (6.4 mm), showed moderate softness, which is consistent with their high extrudability and spreadability. Formulation S5 and S7, in particular, had a bright yellow color and a texture, which improves patient acceptability marketability. Overall, based on color, consistency, and homogeneity, formulations S5 and S7 emerged as the most optimized nanogels combining attractive visual appearance, suitable texture, and structural uniformity, making them ideal candidates for further pharmacological evaluation and wound-healing studies. The viscosity and entrapment efficiency and percentage yield indicates that S5 and S7 are the most promising nanogel formulations, exhibiting the ideal rheological properties and maximum drug loading, which are critical for ensuring effective topical delivery and sustained therapeutic action. These formulations combine small particle size, narrow size distribution, and low PDI, all of which improve stability, uniform drug release, and efficacy for topical wound healing applications. The findings highlight the complexity of creating a stable and effective saffron gel formulation, while emphasizing the importance of continuous refinement to achieve the desired quality and performance. The study contributes valuable insights into saffron's potential as both a therapeutic and cosmetic agent, advocating for further optimization in gel formulation to unlock its full potential.

©2024 The authors

This is an Open Access article distributed under the terms of the Creative Commons Attribution (CC BY NC), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.(https://creativecommons.org/licenses/by-nc/4.0/)

INTRODUCTION:

Wound healing is a critical physiological process that involves restoring the integrity of injured tissue. This multifaceted process comprises hemostasis, inflammation, proliferation, and remodeling, which must occur in a well-orchestrated manner to achieve successful tissue repair. However, chronic wounds or delayed healing, often caused by infections, oxidative stress, or underlying health conditions like diabetes, pose significant challenges in clinical management (Guo & DiPietro, 2010).

Conventional wound therapies, while effective to some extent, are often associated with limitations, including slow healing rates, adverse drug reactions, and high costs. These challenges have led to the exploration of advanced wound care strategies, such as nanotechnology-based drug delivery systems. Among these, nanogels have gained attention due to their small size, high surface area, biocompatibility, and ability to deliver drugs or bioactive compounds precisely to the wound site. Nanogels also allow controlled and sustained release of therapeutic agents, reducing the frequency of application and enhancing patient compliance (Kabanov & Vinogradov, 2009).

Herbal medicines, rooted in traditional practices, are recognized for their natural bioactive compounds, such as alkaloids, flavonoids. saponins, and terpenoids, which exhibit antimicrobial, antioxidant, and anti-inflammatory properties. When integrated into nanogel phytoconstituents formulations, these synergistically accelerate wound healing by addressing multiple aspects, including infection control, inflammation reduction, and stimulation of collagen synthesis and angiogenesis (Raina et al., 2022)

Role of Herbal Medicines in Wound Healing

Herbal medicines have been extensively utilized for their wound-healing properties. Bioactive compounds present in medicinal plants, such as alkaloids, flavonoids, saponins, and terpenoids, exhibit antioxidant, antimicrobial, and antiinflammatory effects. These phytochemicals aid in modulating oxidative stress, preventing infections, and enhancing cellular proliferation and angiogenesis, which are critical for wound repair (Sharma et al., 2020). Herbal nanotechnology integrates these benefits with advanced drug delivery systems, ensuring precise targeting and controlled release for improved therapeutic outcomes (Kabanov & Vinogradov, 2009).

Nanogels in Wound Management

Nanogels, characterized by their nano-scale size, hydrophilic nature, and high drug-loading capacity, offer significant advantages for wound treatment. They provide controlled drug release, enhance drug stability, and improve penetration at the wound site. Studies have demonstrated the potential of nanogels to deliver herbal extracts effectively, combining modern pharmaceutical techniques with traditional medicinal benefits. Their biocompatibility further ensures minimal side effects during wound healing (Madheswaran et al., 2021).

Crocus sativus in Wound Healing

Crocus sativus, commonly known as saffron, has been studied for its diverse pharmacological properties, including its wound-healing potential. Saffron contains bioactive compounds like crocin, crocetin, safranal, and picrocrocin, which exhibit potent antioxidant, anti-inflammatory, antimicrobial activities. Research indicates that these compounds promote collagen synthesis, angiogenesis, and epithelialization, making saffron an excellent candidate for wound management & Hosseinzadeh. 2013). incorporated into nanogels, the therapeutic efficacy of saffron can be significantly enhanced due to improved stability and targeted delivery (Babaei et al., 2015).

This study aims to develop a nanogel herbal formulation specifically designed for wound healing. The objectives include its standardization, evaluation of physicochemical and stability parameters, and pharmacological screening to validate its therapeutic potential. The findings will contribute to the growing field of herbal nanotechnology and offer an advanced, costeffective solution for wound care.

MATERIAL & METHODS:

Material Used

The formulation of herbal gels involves various materials, including active ingredients like Crocus sativus and excipients such as gelling agents, hydroxypropyl methylcellulose (HPMC), and triethanolamine for gel consistency. Solvents like ethanol and purified water are used to dissolve components, while glycerin and Tween 80 serve as humectants and emulsifiers, respectively.

Analytical reagents like Fehling's solution, Molisch's reagent, Benedict's qualitative reagent, Barfoed's reagent, NaOH solution, ferric chloride solution, Mayer's reagent, Dragendorff's reagent, Hager's reagent, and the Lieberman–Burchard reagent are used for qualitative phytochemical testing during formulation and standardization.

Instrument Used

The formulation and evaluation of herbal gels require a variety of instruments to ensure product quality, stability, and efficacy. Key equipment includes analytical balances for accurate measurements, mixer/blenders, homogenizers, and emulsifying equipment for uniform mixing, and heating and mixing equipment for preparation. Instruments like pH meters, viscometers or rheometers, and stability chambers are essential for assessing physical and chemical properties. Supporting tools such as beakers, flasks, pipettes, stirring rods, funnels, burettes, and petri dishes aid in laboratory procedures. Additional equipment like desiccators, centrifuge tubes, test tubes, drying ovens, and pH electrodes ensure thorough analysis and testing during gel formulation.

Collection And Authentication Of Plant Material

The selected plant material Crocus sativus threads was purchased and the specimens were identified and authenticated by the Department of Botany and their herbarium.

Soxhlet extraction

The Soxhlet extraction of saffron involves weighing 10 g of saffron threads and placing them in the thimble of a properly assembled Soxhlet extractor connected to a round-bottom flask containing 100 ml of ethanol as the solvent. The ethanol is heated using a heating mantle, vaporized, and condensed in the condenser, allowing it to drip onto the saffron for cyclic extraction over several hours until the solvent becomes saturated with saffron compounds. The extract is then concentrated using a rotary evaporator to remove ethanol, filtered through filter paper to eliminate solids, and stored in a dark, airtight container to preserve its bioactive properties. This process ensures efficient extraction of saffron compounds, suitable for research in food, pharmaceutical, or cosmetic applications, with safety precautions adhered to during solvent handling and heating.

Macroscopic studies

The selected crude drugs were subjected to studies organoleptic characters viz., color, odour, appearance, taste, texture etc.

Physicochemical Evaluation of Plant Drug

• Determination of Ash Value

Ash content is a crucial parameter in the physicochemical analysis of food and agricultural

products, reflecting the inorganic residue remaining after the complete combustion of organic matter. It provides valuable insights into the mineral composition, particularly the inorganic salts present in the sample. The analysis requires a crucible (porcelain, quartz, or metal), a muffle furnace capable of 550-600°C, a desiccator for cooling and drying, and an analytical balance for accurate measurements. The procedure involves weighing the sample, preheating the crucible in the muffle furnace to remove residues, and cooling it in a desiccator. The weighed sample is evenly placed in the crucible and subjected to gradual heating in the furnace until complete combustion is achieved. After cooling the crucible in the desiccator, the ash content is determined by weighing the crucible with the ashed sample, with the weight increase corresponding to the ash content. This method ensures accurate and reliable determination of mineral residues.

Calculation

Ash Content (%) =
$$\frac{Weight \ of \ Ash}{Weight \ of \ Sample} \times 100$$

Determination of Total Ash Value

The precise determination of total ash content involves evaluating both naturally occurring minerals and added impurities. This process requires materials such as a crucible (porcelain, quartz, or metal), a muffle furnace capable of 550-600°C, a desiccator for cooling, an analytical balance for accurate measurements, and an ashing dish for uniform burning. The procedure begins with accurately weighing a representative sample and preheating the crucible in the muffle furnace to remove organic residues, followed by cooling in a desiccator. The weighed sample is transferred into the crucible, ensuring even distribution, and subjected to combustion in the furnace at around 550-600°C until fully ashed. The cooled crucible is reweighed, with the weight increase indicating the total ash content. This method ensures reliable results for mineral and impurity analysis.

Calculation

Total Ash Content (%) =
$$\frac{Weight \ of \ Ash}{Weight \ of \ Sample} \times 100$$

Determination of acid insoluble ash

The determination of acid-insoluble ash involves assessing the mineral content that remains undissolved in dilute hydrochloric acid, providing insights into impurities like silica or other insoluble substances. The process requires materials such as a crucible, muffle furnace (550-600°C), desiccator, analytical balance, ashing dish, and dilute hydrochloric acid (HCl). The procedure begins with weighing the sample and completing the total ash determination process. The resulting ash is treated

with HCl to dissolve soluble salts, then filtered to separate the insoluble ash. The residue is washed with hot water, dried, and ashed in a muffle furnace until a constant weight is achieved. After cooling in a desiccator, the residue is weighed, with the resulting weight increase representing the acid-insoluble ash content. This method ensures precise evaluation of mineral impurities.

Calculation:

Acid Insoluble Ash Content (%) = <u>Weight of Acid Insoluble Ash Content</u> <u>Weight of Sample</u> x100

Determination of water soluble ash

The determination of water-soluble ash involves evaluating the mineral components that dissolve in water, providing insight into the solubility and purity of the sample. The process requires materials such as a crucible, muffle furnace (550-600°C), desiccator, analytical balance, ashing dish, and water. The procedure begins by accurately weighing a representative sample, followed by the total ash determination process. The resulting ash is treated with water to dissolve water-soluble components, then filtered to separate these components from the insoluble ash. The residue is washed with water, dried, and ashed in a muffle furnace until a constant weight is achieved. After cooling in a desiccator, the residue is weighed, and the increase in weight corresponds to the watersoluble ash content. This method is essential for determining the solubility characteristics of a material.

Calculation:

Water-Soluble Ash Content (%)

Water-Soluble Ash Content
Weight of Sample

Moisture content

Moisture content is a vital parameter for quality control, product development, and process optimization in industries such as pharmaceuticals, and materials testing. determination process involves using an analytical balance, drying oven or moisture analyzer, and a desiccator. First, accurately weigh the sample, then choose a drying method: the drying oven method (dry the sample in a pre-weighed dish at 105-110°C until constant weight) or the moisture analyzer method (follow the analyzer's instructions). After drying, place the sample in a desiccator to cool, preventing moisture absorption. Finally, reweigh the sample. The decrease in weight represents the moisture content.

Prelimnary phytochemical analysis of extracts

Preliminary phytochemical analysis is an essential step in identifying and characterizing the chemical compounds present in plant extracts, which may have various biological activities and contribute to the medicinal properties of the plants. One of the key tests for alkaloids involves using Mayer's reagent, Dragendorff's reagent, Wagner's reagent, and Hager's reagent. In Mayer's test, a yellow or cream-colored precipitate indicates alkaloids, while Dragendorff's reagent forms an orange or redbrown precipitate. Wagner's reagent yields a reddish-brown precipitate, and Hager's reagent forms a yellow or orange precipitate, all of which signify the presence of alkaloids.

For carbohydrates, tests such as Molisch's, Fehling's, and Benedict's reagents are used. In Molisch's test, a violet ring at the junction of the plant extract and sulfuric acid indicates carbohydrates. Fehling's and Benedict's reagents detect reducing sugars; Fehling's test produces a brick-red precipitate when reducing sugars are present, while Benedict's test forms a colored precipitate ranging from green to brick-red upon heating. Glycosides are identified using the modified Borntrager's reagent test, where a pink, red, or violet color in the ammoniacal layer suggests their presence.

Phytosterols and triterpenoids can be detected using Liebermann, Libermann-Burchard, and Salkowski reagents. In Liebermann's test, a color change from violet to blue or green indicates these compounds, while the Libermann-Burchard test results in a green color. Salkowski's reagent test produces a red-brown color in the presence of triterpenoids. Protein and amino acids are tested with Millon's, Ninhydrin, and Biuret reagents. A brick-red precipitate from Millon's reagent indicates proteins, while Ninhydrin's test produces a blue or purple color for amino acids. Biuret's test forms a violet color in the presence of proteins.

For phenolic compounds and tannins, the Ferric Chloride reagent test produces a blue-black or green color, indicating phenolic compounds, while the Lead Acetate reagent test forms a white or yellow precipitate, signaling tannins. Flavonoids are detected using Shinoda's reagent, where a red color suggests their presence. Oils and fats can be identified with the Oily Spot test, which leaves a translucent spot on filter paper, confirming their presence. Finally, saponins are tested by shaking the extract with water; persistent foam or a stable foam layer indicates the presence of saponins.

Formulation of Nanoparticle and Nanogel Formulation.

Formulating a saffron extract gel involves combining key ingredients like saffron extract, Tween 80, Carbomer 934, Polyethylene glycol, Polyvinyl alcohol, Triethanolamine, and purified

water. The process begins with accurately weighing the ingredients and formulating the Nanoparticles and Nanogel. Carbomer 934 is dispersed in purified water, followed by the addition of Tween 80 for stability. Saffron extract is then mixed into the dispersion, and hydration forms the gel structure. The gel is neutralized with Triethanolamine to achieve the desired pH, and Polyethylene glycol and Polyvinyl alcohol are added for homogeneity.

The mixture is thoroughly blended, and quality control tests for Various physiochemical parameters and microbial stability are conducted. After successful testing, the gel is packaged with labeling and storage instructions. Adherence to safety and regulatory guidelines ensures a high-quality final product.

Table: Formulation Table Composition gel

Ingredients (g)	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	S-9	S-10
Saffron extract	80	80	80	80	80	80	80	80	80	80
Tween 80	-	2	-	2		3	-	4	-	-
Carbomer 934	2	-	3	-	2	-	2	-	-	-
Polyethylene glycol	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Polyvinyl alcohol	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Triethanolmine	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Purified Water	q.s									

q.s means "quantity sufficient

Formulated Nanogel Evaluation parameters of Nanogel Formulation pH

To evaluate the pH, a pH meter is preferred for its precision, although pH indicator strips can also be used. Begin by preparing the gel sample, potentially diluting it to ensure homogeneity. Calibrate the pH meter with standard buffer solutions to ensure accuracy. Immerse the pH electrode into the gel sample, allow the reading to stabilize, and record the value. The pH directly impacts ingredient stability, making pH evaluation essential for gel formulation quality.

Spreadability

Spreadability is an essential quality in evaluating topical formulations like gels, creams, and lotions. It determines how easily a product spreads on the skin, influenced by the formulation's texture and rheological properties. Visual observation is often the first step, with a smooth and uniform appearance indicating good spreadability.

Extrudability

Extrudability is a key characteristic in the evaluation of topical formulations, particularly gels, and refers to the ease with which a product can be dispensed from its container or packaging. This property is crucial for user convenience,

ensuring that the product can be easily and uniformly extruded or dispensed when applied to the skin.

Appearance

The appearance of the prepared herbal nanogel was evaluated visually under adequate daylight conditions to assess its physical characteristics such as color, clarity, homogeneity, and presence of any particulate matter. The formulation was carefully inspected for consistency, phase separation, and uniformity to ensure that the gel exhibited a smooth texture and was free from grittiness or aggregates. The evaluation was performed in triplicate for all prepared batches to confirm reproducibility and reliability of observations. The appearance is considered a critical parameter as it directly patient compliance, influences acceptability, and marketability of the formulation.

Viscosity

Viscosity is often measured using a viscometer, an instrument designed to assess the resistance of a fluid or gel to shear forces. Different types of viscometers, such as rotational viscometers or capillary viscometers, may be used based on the gel's characteristics.

Homogeneity

In the context of gels, homogeneity is particularly important to ensure consistent application and the desired properties. Visual assessment is the simplest method to evaluate homogeneity. The absence of visible clumps, aggregates, or phase separation indicates good homogeneity. Regular visual checks during and after the manufacturing process are essential.

Consistency

Visual inspection and basic manual testing were used to assess the consistency of the prepared nanogel in order to ascertain its firmness, smoothness, and spreadability. To check for homogeneity and a smooth texture free of lumps or grit, a tiny amount of the gel was pressed between the thumb and index finger. Additionally, the formulation's capacity to maintain its shape in the container without becoming overly fluid or rigid was noted, guaranteeing that it would be simple to apply to the skin.

Entrapment Efficiency

The entrapment efficiency of the herbal nanogel was determined to assess the amount of Crocus sativus extract successfully incorporated into the polymeric network. The nanogel was centrifuged to separate the unentrapped extract, and the free extract in the supernatant was quantified using a suitable analytical method. Entrapment efficiency was calculated using the formula:

EE(%)

All measurements were performed in triplicate, and results were expressed as mean ± SD. This parameter is essential to evaluate the effectiveness of the nanogel formulation in retaining the active constituents.

Percentage Yield of Nanogel

The percentage yield of the formulated herbal nanogel was determined to evaluate the efficiency and reproducibility of the preparation process. After completion of the formulation, the nanogel was carefully collected, weighed, and compared with the total theoretical weight of all constituents initially used, including the polymer, crosslinking agents, and Crocus sativus extract. The percentage yield was calculated using the formula:

Percentage Yield (%) Actual weight of dried nanogel

Total weight of all ingredients used x100

Drug Loading (DL%)

Drug loading (DL%) is an important parameter to determine the amount of active constituent incorporated into the nanogel relative to the total weight of the formulation. It provides an estimate of how effectively the nanogel system can carry the bioactive compound and is critical for ensuring consistent therapeutic efficacy. To determine DL%, a known quantity of the nanogel was accurately weighed and the total amount of Crocus sativus extract contained within the formulation was quantified. The drug loading was then calculated using the following formula:

DL (%) = $\frac{\text{Weight of drug in nanogel}}{\text{Total weight of nanogel}} \times 100$

All measurements were performed in triplicate, and the results were expressed as mean values. Determination of DL% is essential for evaluating the efficiency of the nanogel in encapsulating the active ingredient and for optimizing the formulation to achieve the desired therapeutic outcomes.

Stability study:

In accordance with the guidelines provided by the International Council for Harmonization Technical Requirements for Pharmaceuticals for Human Use (ICH), particularly ICH Q6A, stability studies of topical herbal gel formulations were carried out. These investigations' main goal was to assess the formulations' stability in a range of environmental factors, including pH, humidity, and temperature.

Stability Testing Conditions:

Temperature and Humidity Conditions:

The formulations underwent storage at different

Total amount of extract added — Free extract in supernata temperatures:

Total amount of extract added $30^{\circ}\text{C} \pm 20^{\circ}\text{C} / 65\% \text{ RH} \pm 5\% \text{ RH}$ for 6 months (30, 60, 90, 180 days).

> $40^{\circ}\text{C} \pm 20^{\circ}\text{C} / 75\% \text{ RH} \pm 5\% \text{ RH}$ for 6 months (30, 60, 90, 180 days).

Stability Duration:

The stability assessment spanned time points ranging from (30 to 180) days, contingent upon the specific storage conditions.

ICH Recommendations:

The selected temperature and humidity conditions align with the ICH Q6A guidelines for stability testing.

By adhering to these rigorous stability testing conditions, the study aimed to provide a comprehensive understanding of the formulations' robustness and integrity under simulated environmental challenges. The assessment covered a range of temperatures and humidity levels, ensuring that the herbal gel formulations would maintain their quality, efficacy, and physical attributes over an extended period. The data generated from these stability studies will be instrumental in determining the formulations' shelf life and storage recommendations, ultimately contributing to the formulation's regulatory compliance and successful market introduction.

In vitro diffusion study

The purpose of the in vitro diffusion study was to assess the release profiles of particular gel formulations that were picked based on particular characteristics. The formulations, with exception of the one containing methanol and chloroform, were subjected to systematic testing using the Franz diffusion cell. The readings from the UV spectrophotometer made it easier to

calculate the cumulative release percentage and gave information about how quickly the active ingredients in the gel formulations diffused into the dissolving medium. This thorough investigation made it possible to create a time-concentration profile, which clarified the dynamics of substance release from the gels over time. Four models were taken into account:

1. First Order Kinetics: One dependent kinetics model that was taken into consideration was first-order kinetics. This model takes into consideration situations in which a combination of swelling, erosion, and diffusion processes may result in drug release. The remaining drug concentration in the formulation has a direct correlation with the release rate. The following is the expression for the first-order kinetics equation:

 $Ct = C0 \cdot e - kt$

- C_t is the drug concentration at time t,
- C_0 is the initial drug concentration,
- k is the first-order rate constant,
- t is time.

According to this equation, the drug concentration will gradually drop exponentially. The remaining drug concentration directly correlates with the release rate.

2. Zero Order Kinetics: Additionally, zero-order kinetics, a concentration-independent model, was applied. This model assumes that the release rate remains constant over time, regardless of the drug concentration. It facilitates the assessment of drug release mechanisms that are not solely dependent on the residual medication concentration. The equation for zero-order kinetics is shown as follows:

 $C_t = C_0 - k_0 \cdot t$

where:

- Ct is the drug concentration at time t,
- C_0 is the initial drug concentration,
- k_0 is the zero-order rate constant,
- t is time.

In this model, the release rate remains constant over time, irrespective of the initial drug concentration.

3. Higuchi's Model: To validate the data and produce significant results, Higuchi's model was utilized. This model is especially applicable to formulations in which diffusion processes play a

major role in controlling drug release. Higuchi's equation sheds light on the diffusion-controlled release kinetics by connecting the cumulative drug release to the square root of time. Higuchi's model is especially applicable to formulations in which diffusion plays a major role in controlling drug release. The equation is given by:

 $Q = k_H \cdot t^{0.5}$

where:

- *Q* is the cumulative amount of drug released at time *t*,
- k_H is Higuchi's rate constant,
- t is time.

This equation suggests a square root timedependent drug release profile, indicating diffusion-controlled release kinetics.

4. Korsmeyer–Peppas Model: To better understand the process of drug release from the formulation and to further investigate the release kinetics, the Korsmeyer–Peppas model was utilized. When the release process combines diffusion with polymer relaxation or erosion mechanisms, this model is especially helpful. The formula determines whether the release follows Fickian diffusion, anomalous transport, or case-II transport by relating the logarithm of the fraction of drug released to the logarithm of time. The equation is expressed as:

Mt=Ktn

where:

 $Mt/M\infty = Kt^n \,$

- $Mt/M\infty$ is the fraction of drug released at time ttt,
- KKK is the release rate constant,
- nnn is the release exponent that characterizes the release mechanism.

This model helps classify the release mechanism: when n=0.5n=0.5n=0.5, it indicates Fickian diffusion; when 0.5 < n < 1.00.5 < n < 1.00.5 < n < 1.00.5 < n < 1.00, it suggests anomalous (non-Fickian) transport; and when n=1n=1, it represents case-II transport, which is typically governed by polymer relaxation or erosion. Values of n>1n>1 correspond to super case-II transport.

Results of Nanogel Formulations Macroscopic studies:

Saffron's allure extends beyond the visual, beckoning the olfactory senses with its distinct and captivating fragrance.

Table: Organoleptic characters of plants Crocus Sativus

Indic. Of	Sanoichtic characters of	plants Crocus Sativas
S.No	Parameters	Observations of Crocus sativus (saffron)
1.	Shape	Typically has a thread-like shape. It is long and slender
2.	Size	High-quality saffron threads are long and uniform in size
3.	Odour	Saffron has a distinct and aromatic fragrance
4.	Taste	It has a slightly bitter taste, and its pungent
5.	Colour	The color of saffron threads is a crucial indicator of quality. High-quality saffron
		has a deep red color.

6.	Foreign organic matter	Good quality saffron should be free of any foreign organic matter, such as dirt,
		insects, or other plant material.

Physicochemical Standardization of Proposed Plant Drug

The following physicochemical properties were determined by normal technique using the powdered plant material of Crocus sativus (saffron).

Table: Standardization parameters of Crocus sativus (saffron)

(Sain on)		
S.No	Parameters % (w/w)	Crocus sativus
		(saffron) (% w/w)
1	Total Ash value	11.02
2	Foreign organic matter	0.5
3	Water soluble ash	5.25
4	Acid insoluble ash	1.25
5.	Moisture content	7.05
6.	Extractive value	2.00 g of dry crude
		extract (yield 20.0%
		w/w).

Crocus sativus (saffron) % (w/w)

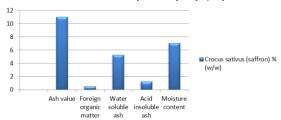


Fig: Graph of Standardization parameters of Crocus sativus (saffron)

Preliminary Photochemical Analysis of Extracts:

In the analytical exploration of Crocus sativus, commonly known as saffron, an array of chemical tests has been conducted on its ethanol extract to unravel the intricate composition and potential bioactive constituents. These tests serve as a scientific tapestry, weaving together the presence or absence of specific compounds, offering insights into the chemical profile of saffron.

Table: Phytochemical Profile of Crocus sativus (saffron)

Extrac	l.	
S.n	Chemical Tests	Crocus sativus
О		(saffron) Extract
		Ethanol
1.	Tests for Steroids and	
	Triterpenoids:	
	Liebermann's Burchard Test	+
	Salkowski Test	+
2.	Test for Saponins:	
	Foam Test	+
3.	Tests for Alkaloids:	
	Hager's Test	-
	Mayer's Test	-
4.	Tests for Glycosides:	
	Borntrager's Test	-
	Keller Killiani Test	-
5.	Tests for Tannins and	
	Phenolic compounds:	
	Gelatin Test	+
	Ferric Chloride Test	+
6.	Tests for Flavonoids:	
	Ferric chloride Test	+
	Alkaline reagent Test	+
7.	Tests for Proteins:	
	Biuret Test	+
	Xanthoproteic Test	+
8.	Test for Polysaccarides:	
	Molish Reaction	-

Where + is Present and - is Absent

Physical evaluation and characterization of formulated nanogel

Evaluation of Nanoparticles

In the realm of pharmaceutical sciences, the art of formulation is a delicate dance between precise measurements and the pursuit of optimal characteristics. Our quest for excellence in gel formulations led us to a meticulous evaluation of ten distinct formulations, each identified by the label S-1 through S-10. The particle size and polydispersity index (PDI) are critical parameters in the characterization of nanoparticulate systems, as they directly influence stability, drug release, bioavailability, and therapeutic efficacy. In the present study, the Z-average particle size, PDI, and size distribution range of saffron nanogel formulations (S1-S10) were determined and are summarized in below table

Table: Particle Size and Polydispersity Index (PDI) of Saffron Nanoparticle Formulations

Formulation Code	Z-Average Particle Size (nm ± SD, n=3)	PDI (± SD, n=3)	Size Distribution Range (nm)
S1	145.3 ± 8.1	0.183 ± 0.018	80 – 220
S2	158.7 ± 9.3	0.195 ± 0.020	90 – 260
S3	178.6 ± 10.5	0.225 ± 0.025	100 – 300
S4	202.1 ± 12.0	0.278 ± 0.030	120 – 350
S5	92.4 ± 4.8	0.125 ± 0.010	50 – 150
S6	112.7 ± 6.2	0.158 ± 0.015	60 - 180
S7	88.9 ± 5.0	0.110 ± 0.009	45 – 140
S8	125.5 ± 7.0	0.160 ± 0.016	70 - 200
S9	140.0 ± 8.5	0.210 ± 0.028	85 - 260
S10	230.4 ± 14.8	0.342 ± 0.040	130 – 420

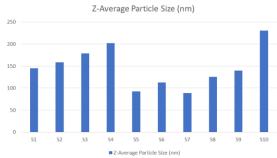


Fig: Z-Average Particle Size (nm)

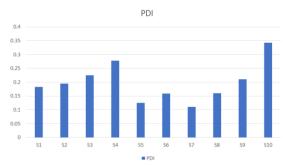


Fig: PDI (Polydispersity Index)

Evaluation of nanogel Formulation

In the realm of pharmaceutical sciences, the art of formulation is a delicate dance between precise measurements and the pursuit of optimal characteristics. Our quest for excellence in gel formulations led us to a meticulous evaluation of ten distinct formulations, each identified by the label S-1 through S-10. This evaluation, conducted with an unwavering commitment to precision, encompassed the critical parameters of pH, Spreadability, and Extrudability.

Table: Evaluation of nanogel Formulation

Formulation	Ph	Spreadability	Extrudability
		(g·cm/sec)	(g/cm²)
S-1	5.5	5.3	91.0
S-2	5.7	5.8	92.8
S-3	6.1	5.5	92.1
S-4	5.5	5.9	93.2
S-5	6.0	6.5	96.2
S-6	6.2	6.0	94.0
S-7	6.1	6.6	96.5
S-8	6.4	5.9	93.4
S-9	6.2	5.6	92.3
S-10	5.8	6.0	94.2

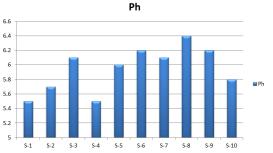


Fig: Evaluation of different formulations of nanogel formulation (Ph)

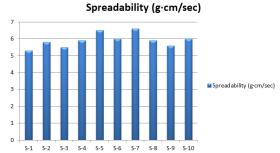


Fig :Evaluation of different formulations of nanogel formulation (Spreadability (g.cm./sec.)

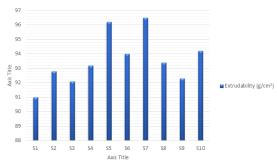


Fig :Evaluation of different formulations of nanogel formulation (Extrudability (g/cm²)

Evaluation of Gel Formulation

This evaluation, conducted with an unwavering commitment to precision, encompassed the critical parameters of color, Consistency, and Homogeneity.

Table: Evaluation of Gel Formulation

Table: Evaluation of Ger I ormulation					
Formulation	Color	Consistency (mm)			
S-1	Light yellow	5.8			
S-2	Pale yellow	6.0			
S-3	Light yellow	5.5			
S-4	Pale yellow	5.9			
S-5	Bright yellow	6.3			
S-6	Pale yellow	5.7			
S-7	Bright yellow	6.4			
S-8	Light yellow	5.8			
S-9	Pale yellow	5.6			
S-10	Light yellow	6.0			

Consistency (mm)

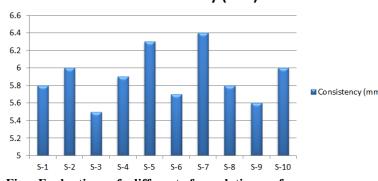


Fig: Evaluation of different formulations of nanogel formulation (Consistency(mm) Evaluation of Gel Formulation

This evaluation, conducted with an unwavering commitment to precision, encompassed the critical parameters of viscosity and entrapment efficiency.

Table: Evaluation of Nanogel Formulations

Formulation	Viscosity (cP)	Entrapment
		Efficiency (%) ±
		SD
S1	14,850	81.0 ± 1.6
S2	14,420	83.2 ± 1.7
S3	13,610	79.5 ± 1.8
S4	13,340	84.2 ± 1.9
S5	13,980	87.0 ± 1.4
S6	13,690	84.0 ± 1.8
S7	14,200	86.5 ± 1.5
S8	13,530	83.1 ± 1.7
S9	13,250	81.5 ± 1.6
S10	14,030	84.3 ± 1.9

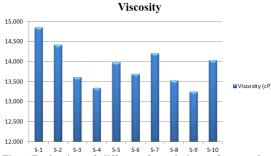


Fig : Evaluation of different formulations of nanogel gel formulation (Viscosity)

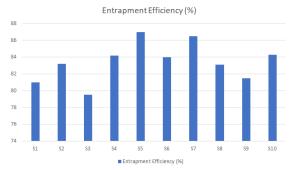


Fig: Evaluation of different formulations of nanogel gel formulation (Entrapment Efficiency (%))

Evaluation of Gel Formulation

This evaluation, conducted with an unwavering commitment to precision, encompassed the critical parameters of percentage yield and drug loading.

Table: Evaluation of Gel Formulation

Formulation	Percentage	Yield	Drug	Loading
Code	(%) ± SD		(DL%):	± SD
S1	87.2 ± 2.0		7.7 ± 0.1	5
S2	88.0 ± 1.9		8.1 ± 0.1	7
S3	86.7 ± 2.1		7.5 ± 0.1	3
S4	88.5 ± 1.8		8.3 ± 0.1	8
S5	90.2 ± 1.7		8.8 ± 0.1	2
S6	88.3 ± 1.9		8.2 ± 0.1	6
S7	90.0 ± 1.6		8.7 ± 0.1	4
S8	87.9 ± 2.0	•	8.0 ± 0.1	6
S9	87.0 ± 2.1	•	7.6 ± 0.1	5
S10	88.8 ± 1.8		8.4 ± 0.1	8

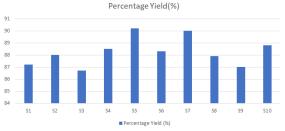


Fig: Evaluation of different formulations of nanogel gel formulation (Percentage Yield Efficiency (%)

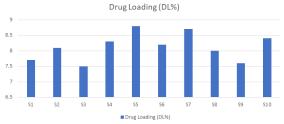


Fig: Evaluation of different formulations of nanogel gel formulation (Drug Loading (DL%))
Evaluation of Gel Formulation

This evaluation, conducted with an unwavering commitment to precision, encompassed the critical parameters of Stability Study of Nanogel. The stability of the optimized saffron nanogel formulations (S5 and S7) was evaluated under various temperature and humidity conditions in accordance with ICH Q6A guidelines. The formulations were stored at 30°C \pm 2°C / 65% RH \pm 5% RH for 6 months and 40°C \pm 2°C / 75% RH \pm 5% RH for 6 months (30, 60, 90, 180 days).

Table: Stability Study of Saffron Nanogel Formulations (S5 & S7)

Formulation	Storage Condition	Time (Days)	pН	Viscosity (cP)	Spreadability (g·cm/sec)	Appearance
S5	30°C ± 2°C / 65% RH ± 5%	30	6.8	14,800	5.8	Clear, Bright Yellow
S5	30°C ± 2°C / 65% RH ± 5%	60	6.7	14,750	5.7	Clear, Bright Yellow
S5	30°C ± 2°C / 65% RH ± 5%	90	6.6	14,700	5.6	Clear, Bright Yellow
S5	30°C ± 2°C / 65% RH ± 5%	180	6.5	14,650	5.5	Clear, Bright Yellow
S5	40°C ± 2°C / 75% RH ± 5%	30	6.7	14,700	5.7	Clear, Bright Yellow
S5	$40^{\circ}\text{C} \pm 2^{\circ}\text{C} / 75\% \text{ RH} \pm 5\%$	60	6.6	14,650	5.6	Clear, Bright

						Yellow
S5	40°C ± 2°C / 75% RH ± 5%	90	6.5	14,600	5.5	Clear, Bright Yellow
S5	40°C ± 2°C / 75% RH ± 5%	180	6.4	14,550	5.4	Clear, Bright Yellow
S7	30°C ± 2°C / 65% RH ± 5%	30	6.8	14,900	5.9	Clear, Bright Yellow
S7	30°C ± 2°C / 65% RH ± 5%	60	6.7	14,850	5.8	Clear, Bright Yellow
S7	30°C ± 2°C / 65% RH ± 5%	90	6.6	14,800	5.7	Clear, Bright Yellow
S7	30°C ± 2°C / 65% RH ± 5%	180	6.5	14,750	5.6	Clear, Bright Yellow
S7	$40^{\circ}\text{C} \pm 2^{\circ}\text{C} / 75\% \text{ RH} \pm 5\%$	30	6.7	14,800	5.8	Clear, Bright Yellow
S7	40°C ± 2°C / 75% RH ± 5%	60	6.6	14,750	5.7	Clear, Bright Yellow
S7	40°C ± 2°C / 75% RH ± 5%	90	6.5	14,700	5.6	Clear, Bright Yellow
S7	40°C ± 2°C / 75% RH ± 5%	180	6.4	14,650	5.5	Clear, Bright Yellow

Evaluation of Gel Formulation

This evaluation, conducted with an unwavering commitment to precision, encompassed the critical parameters of In-vitro Dissolution of Nanogel.

Table: In vitro drug release kinetics of different Nanogel formulations

Batch	Zero Order	First Order	Higuchi	Korsmeyer-Peppas	Reference Drug: Curcumin Nanogel
Code	(\mathbf{r}^2)	(\mathbf{r}^2)	(\mathbf{r}^2)	(\mathbf{r}^2)	(\mathbf{r}^2)
S-1	0.9442	0.9814	0.9863	0.9770	0.9750 (Curcumin)
S-2	0.9657	0.9711	0.9864	0.9951	0.9800 (Curcumin)
S-3	0.9207	0.9682	0.9842	0.9781	0.9720 (Curcumin)
S-4	0.9214	0.9552	0.9724	0.9681	0.9670 (Curcumin)
S-5	0.9139	0.9414	0.9673	0.9807	0.9500 (Curcumin)
S-6	0.9190	0.9763	0.9654	0.9765	0.9780 (Curcumin)
S-7	0.9411	0.9664	0.9635	0.9778	0.9850 (Curcumin)
S-8	0.9334	0.9526	0.9848	0.9671	0.9660 (Curcumin)
S-9	0.9415	0.9666	0.9842	0.9538	0.9650 (Curcumin)
S-10	0.9178	0.9527	0.9713	0.9701	0.9730 (Curcumin)

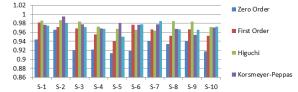


Fig: In vitro drug release kinetics

CONCLUSION:

In conclusion, the comprehensive evaluation of saffron, both organoleptically and through its physicochemical and chemical properties, highlights its multifaceted identity as a valuable botanical resource with significant culinary and therapeutic applications. The detailed chemical tests underscore saffron's rich phytochemical profile, laying the foundation for further exploration of its pharmacological and medicinal properties. The formulation analysis reveals that while several formulations show promising attributes, they remain slightly heterogeneous and require refinement for enhanced consistency and uniformity. This underscores the continuous effort needed in pharmaceutical formulation development to achieve the perfect balance of all the parameters

studied for excellence in creating effective and high-quality products. The pursuit of perfection in this intricate process reflects the ongoing dedication to improving and fine-tuning formulations for optimal performance and user satisfaction.

Further Investigations: The observed effects warrant further investigation into the specific mechanisms underlying the treatment's efficacy in wound healing. Exploring factors such as cellular responses, inflammation, angiogenesis, and tissue remodeling could provide deeper insights into the therapeutic mechanisms at play. Additionally, future studies may explore the clinical relevance of these observed outcomes, potentially leading to the development of a novel therapeutic intervention for wound healing.

ACKNOWLEDGMENT:

I would like to express my heartfelt gratitude to all those who have supported me throughout the course of this study.

Conflict of INTEREST:

The authors declare that there are no conflicts of interest associated with this research.

REFERENCES:

- 1. Guo, S., & DiPietro, L. A. (2010). Factors affecting wound healing. *Journal of Dental Research*, 89(3), 219–229.
- Kabanov, A. V., & Vinogradov, S. V. (2009). Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. *Angewandte Chemie International Edition*, 48(30), 5418–5429.
- Raina, R., Sharma, N., & Joshi, S. C. (2022). Herbal nanotechnology: Applications in wound healing and beyond. *Current Nanoscience*, 18(1), 34–49.
- Malviya, R., Sharma, A., & Dubey, S. K. (2020). Wound healing activity of herbal-based formulations: An insight into nanogel applications. *Journal of Drug Delivery and Therapeutics*, 10(4), 174–183.
- Babaei, S., Eslami, S., & Delazar, A. (2015). Saffron (Crocus sativus L.) and its applications in medicine: A review. Avicenna Journal of Phytomedicine, 5(4), 386– 391.
- Kabanov, A. V., & Vinogradov, S. V. (2009). Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. *Angewandte Chemie International Edition*, 48(30), 5418–5429.
- Khorasani, G., Hosseinimehr, S. J., Shahidi, M., & Ahmadi, A. (2008). The effects of saffron (Crocus sativus) and its constituents on wound healing. *Iranian Journal of Basic Medical Sciences*, 11(1), 12–17.
- Madheswaran, T., Arya, P., & Sharma, V. (2021). Nanotechnology-based herbal formulations for wound healing: A review. *Journal of Drug Delivery Science and Technology*, 63, 102490.
- Rezaee, R., & Hosseinzadeh, H. (2013). Safranal: From an aromatic natural product to a rewarding pharmacological agent. *Iranian Journal of Basic Medical Sciences*, 16(1), 12–26
- Sharma, A., Jain, C., & Garg, G. (2020). Herbal formulations in wound healing: A comprehensive review. *Journal of Herbal Medicine*, 21, 100309.