www.jmolecularsci.com

ISSN:1000-9035

Forensic Exploration Of Genetic Polymorphism In Autosomal Str Markers Among The Populations Of North India: A Review

Brajesh Kumar¹*, Amitabh Biswas², Rajiv Kumar³

¹Ph.D Scholar, Department of Forensic Science, School of Biomedical Sciences, Galgotias University greater, Noida, India.

²Associate Professor, Department of Forensic Science, School of Biomedical Sciences, Galgotias University Greater, Noida, India.

³Professor, Department of Forensic Science, School of Biomedical Sciences, Galgotias University Greater, Noida, India.

Email: brajeshkumar889@gmail.com

Article Information

Received: 06-06-2025 Revised: 15-06-2025 Accepted: 06-07-2025 Published: 24-07-2025

Keywords

DNA, PCR, Allele Frequency; Power of Discrimination; Polymorphism, STR Markers.

ABSTRACT

In forensic science, genetic polymorphism was studied to understand the different forensic parameters like allele frequency, power of discrimination, observed heterozygosity, power of exclusion etc. In DNA fingerprinting units in various forensic labs, research labs and universities in world wide. Genetic polymorphism study was studied of healthy individuals in different caste wise as well as random in human population in a particular area. In different research paper no of samples are different it is near about 150 -1000. DNA was isolated by using automate DNA extraction system, phenol chloroform method and DNA was quantitated by using spectrophotometer generally. In Polymerase chain reaction DNA was amplified by using a thermal cycler machine. PCR-amplified fragments were separated by using capillary electrophoresis on an ABI Prism 3500 Genetic Analyzer Applied Biosystems, USA, and data was analyzed by using the Gene Mapper ID-X software version 1.2. Autosomal STR genetic markers D3S1358, D1S1656, D2S441, D10S1248, D13S317, Penta E, D16S539, D18S51, D2S1338, CSF1PO, Penta D, TH01, vWA, D21S11, D7S820, D5S818, TPOX, D8S1179, D12S391, D19S433, FGA and D22S1045 was studied in population genetics for determining of forensic parameters and data was statistically analyzed by using Gen AlEx software version 6.5, Arlequin V3.5 Software, Power State and Microsoft Excel. The Hardy-Weinberg equilibrium analysis, allele frequencies at each locus, and mathematical computation of observed and expected heterozygosity.

©2025 The authors

This is an Open Access article distributed under the terms of the Creative Commons Attribution (CC BY NC), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.(https://creativecommons.org/licenses/by-nc/4.0/)

INTRODUCTION

The population of North India is characterized by its rich cultural heritage, linguistic diversity, and genetic heterogeneity. Understanding the genetic makeup of this region plays a crucial role in various fields, including population genetics, forensic investigations, and medical research. Autosomal short tandem repeats (STRs) have emerged as powerful genetic markers for studying genetic polymorphism and population structure.

Autosomal STRs are repetitive DNA sequences consisting of two to seven base pair units that are tandemly repeated throughout the genome. These regions exhibit high levels of variability, with the number of repeats varying among individuals. This inherent variability makes autosomal STRs highly informative for genetic studies.

In the field of population genetics, autosomal STR analysis provides valuable insights into the genetic diversity and evolutionary history of populations. By examining the distribution of alleles at multiple STR loci, researchers can unravel patterns of migration, admixture, and population differentiation. This knowledge is particularly important in a region like North India, where diverse ethnic groups, including Indo-Aryans, Dravidians, Tibeto-Burmans, and indigenous tribal populations, coexist.

Forensic genetics is another area where autosomal STR analysis has revolutionized human identification and crime investigations. The uniqueness of DNA profiles generated from multiple STR loci allows for accurate individual identification and exclusion. Furthermore, the comparison of DNA profiles with population-specific allele frequencies aids in assessing the rarity of a given profile within a particular population, strengthening the forensic utility of autosomal STR analysis.

Genetic polymorphism studies focusing on autosomal STR loci have been conducted in the population of North India to explore its genetic diversity, population structure, and forensic applications. These studies involve the collection of DNA samples from diverse individuals representing different ethnic groups within the region. The DNA is then extracted, and polymerase chain reaction (PCR) amplification is performed to target specific STR loci. Capillary electrophoresis is employed to separate and analyze the amplified fragments, allowing for the determination of allele sizes and frequencies.

We may acquire a thorough picture of the region's genetic landscape by reading the research that has already been published on genetic polymorphism studies of autosomal STR loci in North Indian populations. These investigations shed light on patterns of migration and mixing, population-specific allele frequencies, and the genetic relatedness of various ethnic groupings. The genetic diversity data generated from these studies contribute to our understanding of disease susceptibility, pharmacogenomics, and personalized medicine in the North Indian population.

Genetic polymorphism studies of autosomal STR loci in the population of North India have significantly contributed to our knowledge of the region's genetic diversity, population structure, and forensic applications. By employing PCR techniques and analyzing STR loci, researchers have shed light on the unique genetic characteristics of North Indian populations. This literature review aims to summarize and highlight the key findings and implications of these studies, emphasizing the importance of autosomal STR analysis in unraveling the genetic landscape of North India.

DNA Isolation & Quantification:

Genomic DNA was isolated by using chelex method, automate DNA extraction unit applied Biosystems are generally used for forensic population data base research, phenol chloroform isolation method was also applied in some research paper after isolation of DNA, DNA quantification was done by using NanoDrop-1000 spectrophotometer generally.

PCR Amplification:

Approximately 1-2 ng of DNA was taken in this population data research paper; generally, premixed prepared commercial kits were used to amplify the DNA. The generally used PCR kits are the Promega PowerPlex and the AmpFlSTR SGM Plus PCR Amplification Kit applied by Biosystems. The PCR amplification reaction was carried out by using the Veriti thermal cycler applied by Biosystems USA. Thermal cycler parameters are set as per the protocol provided by the manufacturer in each of the samples.

STR Typing:

PCR amplified fragments were separated by using capillary electrophoresis on 3500 Genetic Analyzer (Applied Biosystems, USA) using POP-4 polymer and data was analyzed by using Gene Mapper ID-X software version 1.2 and latest version Gene Mapper ID-X software version 3.2.

Statistical Analysis:

Forensic parameters like allele frequencies, PD: Power of Discrimination, OH: Observed heterozygosity, and PE: Power of Exclusion were calculated using the STRAF, PowerStatsV1.2 software. Hardy—Weinberg equilibrium (HWE) and linkage disequilibrium, estimated through Arlequin v3.5.2 software, the exact test of population differentiation, GenAlEx version 6.5. A neighborjoining phylogenetic tree was developed by using Poptree2 software. The most polymorphic marker was studied, and the results indicated that the STR markers revealed a high level of polymorphisms, which were suitable for personal identification and

parentage testing in forensic sciences.

Genetic Markers kits:

A genetic marker is a specific sequence of DNA that can be associated with a particular gene, these markers can be used to identify individuals or species, and they are typically found in non-coding regions of DNA but can also be associated with genes. Different types of commercial kits are available in worldwide applied Biosystems identifier, Y Filer, Minifiler, Globalfiler, Promega, USA. Sahajpal et al. (2019), studied the genetic diversity of the Rajput population of Himachal Pradesh, India, 20 autosomal Short Tandem Repeat (STR) loci included in the PowerPlex® 21 System (Promega, USA). The study included a total of 179 unrelated individuals from the Rajput population. The results of the study revealed that there were 227 alleles observed across the 20 STR loci, with an average of 11.35 ± 0.89 alleles per locus. Importantly, none of the loci deviated from the Hardy-Weinberg equilibrium (HWE), indicating genetic stability within the population. The locus Penta E was identified as the most polymorphic and discriminative among the studied loci. A phylogenetic tree analysis showed a high genetic affinity of the Rajput population of Himachal Pradesh with Rajput's of Madhya Pradesh and

Yadav of Bihar, suggesting shared genetic ancestry. Overall, the study concluded that the 20 autosomal STRs tested were polymorphic in the Rajput population and could be suitable for forensic casework and population genetic studies. Tania Hossain et al. (2016) used the PowerPlex Fusion System to perform a research on the genetic polymorphism of 22 autosomal STR loci in the Bangladeshi population. The goal of the study was to identify allele frequencies and forensic efficiency factors for kinship analysis and personal identification. The study involved 188 unrelated Bangladeshi Bengali people, and DNA samples from them were examined. With two exceptions, the loci all showed Hardy-Weinberg equilibrium. Penta E was shown to be the most informative locus, while TPOX was found to be the least informative. For each of the 22 loci, the combined power of exclusion (PE) and probability of match (PM) were determined. A neighbor-joining tree analysis indicated the genetic proximity of the Bangladeshi population to Japan, the Philippines, and East Timor. The findings contribute valuable population data for forensic applications and enhance our understanding of genetic diversity in the Bangladeshi population. A comparative chart in table-1

Table -1

Author	Title of	No of	No of	Name of	Countr	Source	Most	Findings
	research	Samples	Genetic	Autosomal STR	y		Polymor	
		studies	markers studies	loci			phic	
Tania	Genetic	188	22.	(D3S1358,	Bangla	Legal	marker D2S441	The combined -
Hossain	Polymorphi	(unrelated	(Autosomal	D1S1656, D2S441,	desh	Medicin	D23441	PM & PE for all
et al.	sm studies	Bangladesh	STR loci)	D10S1248,	uesii	e		22 STR loci were
(2016).	on 22	i Bengali	51K 10C1)	D13S317, Penta E,		6		calculated to be
(2010).	autosomal	individuals)		D16S539, D18S51,				5.29 _ 10_27 and
	STR loci of	marviduais)		D2S1338, CSF1PO,				0.99999999945
	the			Penta D, TH01,				respectively.
	PowerPlex			vWA, D21S11,				respectively.
	Fusion			D7S820, D5S818,				
	System in			TPOX, D8S1179,				
	Bangladesh			D12S391,				
	i			D19S433, FGA and				
	population.			D22S1045)				
Sharif et	Genetic	95	16	D18S51, D21S11,	Bangla	Journal	SE33	The combined
al (2018)	Polymorphi	(randomly	(Autosomal	TH01, D3S1358 ,	desh	of		probability of
	sm of 16	selected	STR loci)	D16S539,		forensic		match (PM) and
	Autosomal	individuals		D2S1338,		Medicin		combined power
	STRs	from		D1S1656,		e		of exclusion (PE)
	Loci of the	Bangladesh		D10S1248 , FGA,				was 1.31×10-20
	PowerPlex	1		D8S1179, VWA,				and 0.999736
	ESX 17	population)		D22S1045, SE33,				
	System in a			D19S433, D12S391 and D2S441				
	Population Sample			and D2S441				
	from							
	Bangladesh							
Hossain	Population	595	15	D21S11, D8S1179,	Bangla	Forensic	D2S133	The PE for all 15
et al.	genetic data	(unrelated	(Autosomal	D7S820, CSF1PO,	desh	Science	8	loci tested 58
(2014)	on 15	Bangladesh	STR loci)	TH01, D13S317,	40311	Internati		were calculated
()	autosomal	i Bangali	2 2 2 2 2 3 2 2 7	D16S539,D2S1338,		onal:		to be 0.9999992
	STR loci in	individuals)		D19S433,D3S1358,		Genetics		
	Bangladesh	,		vWA, TPOX,				
	i			D18S51, D5S818				

	population.			and FGA				
Ahmad Ferdous et al. (2010)	Allele Frequencies of 10 Autosomal STR Loci from Chakma and Tripura Tribal Populations in Bangladesh	167 (Randomly selected 109 Chakma and 58 Tripura individuals)	10 (Autosomal STR loci)	D3S1358, vWA, D16S539, D2S1338, D8S1179, D21S11, D18S51, D19S433, TH01, and FGA	Bangla desh	Molecul ar Biology Internati onal	D18S51	Heterozygosity (Ho) of >0.7 and moderately polymorphic in Tripura population (Ho > 0.6).
Ahmad Ferdous et al. (2009)	Forensic evaluation of STR data for the PowerPlex TM 16 System loci in a Bangladesh i population	148 (Unrelated Bangladesh i individuals)	15 (Autosomal STR loci)	D3S1358 TH01 D21S11 D18S51 Penta E D5S818 D13S317 D7S820 D16S539 CSF1PO Penta D vWA D8S1179 TPOX FGA	Bangla desh	Legal Medicin e	PENTA E	The combined PM and PE for all 15 STR loci tested were 2.05 _ 10_18 and 0.9999996, respectively
Sharif Akhteru zzaman et al. (2012)	Forensic evaluation of 11 non- standard STR loci in Bangladesh i population	102 (Unrelated Bangladesh i individuals)	11 non- standard autosomal STR loci	D21S1437, D22S683, D8S1110, D10S2325, D12S1090, D17S1294, D3S1744, D14S608, D20S470, D18S536 and D13S765	Bangla desh	Legal Medicin e	D8S1110	The combined PD (1-PM) and MP was calculated to be 0.999999999999999999999999999999999999
Hasan, M. M., Rahman, M. H., and Akhteru zzaman, S.(2021)	Genetic polymorphi sm and phylogeneti c analysis of 15 autosomal STR markers in the Santal indigenous population of Bangladesh	132 (Unrelated Santal individuals of Bangladesh)	15 (Autosomal STR loci)	D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818, and FGA	Bangla desh	Bioresea rch Commu nication	FGA	The combined matching probability (MP), combined power of discrimination (PD) and combined power of exclusion (PE) for the 15 tested STR markers were 8.38 x 10-17, 0.99999998 and 0.0.999993866, respectively.
Carlo Wamaith a Chege (2019)	Allele Frequencies For 20 Autosomal Microsatelli te Loci In The Kenyan Population	180 (Unrelated persons)	20 (Autosomal STR loci)	D3S1358, D13S317, PentaE, D16S539,D18S51, D2S1338, CSF1PO, Penta D, THO1, vWA, D21S11, D7S820, TPOX, D8S1179, FGA, D2S1338, D5S818, D6S1043, D12S391, and	Kenya	Research Square.	D3S135 8	PIC values and heterozygosity of 0.799 and 0.831 respectively across the 20 loci.
Maria Elena Ghiani (2021)	Estimating population genetics and forensic efficiency of the GlobalFiler PCR amplificatio n kit in the population of Sardinia	500 (Unrelated individuals)	21 (Autosomal STR Loci) + 03 Sex determinin g Loci	D3S1358, vWA, D8S1179, D16S539, CSF1PO, TPOX, D19S433, TH01, FGA, D21S11, D18S51, D2S441, D22S1045, D5S818, D10S1248, D1S1656, D13S317, D7S820, SE33, D12S391,	Italy	Gene , Elsevier	SE33	Marker SE33 showed the highest degree of polymorphism, whereas TPOX was the least informative locus.

	(Italy)			D2S1338); one Y-STR locus (DYS391) and one Y indel.				
Jilani, Nadeem, Tahir, and Rasool (2016)	Genetic analysis of the Saraiki population living in Pakistan	150 (unrelated individuals of the Saraiki population)	15 (Autosomal STR loci)	D8S1179, D21S11, D7S820 CSF1P0, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818, FGA	Pakista n	Canadia n Society Of Forensic Science Journal	D2S133 8	The average heterozygosity and polymorphism information content (PIC) at all loci were 0.77 and 0.766, respectively
Abban, Edward Kofi, and colleagu es (2020)	Population dataset for 21 simple tandem repeat loci in the Akan population of Ghana	109 (unrelated healthy individuals)	21 (Autosomal STR loci)	D21S11, TPOX, D1S1656, D12S391, SE33, D10S1248, D3S1358, D22S1045, vWA D19S433,D8S1179, , D2S1338, D2S441, D18S51 , FGA, D16S539, CSF1PO, D13S317, D5S818, D7S820, THO1	Ghana	Data in Brief, Elsevier	SE33	The combined match probability, combined power of exclusion and combined power discrimination were 1 in 4.07 ×10 -25 , 0.999999999 and 1, respectively
Hashom Mohd Hakim (2020)	Dataset on 21 autosomal and two sex determining short tandem repeat loci in the Kedayan population in Borneo, Malaysia	200 (Blood samples consisting of 128 male and 72 female)	(Autosomal STR Loci) + 02 sex determinin g STR loci	D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, VWA, TPOX, D18S51, D5S818, FGA, D12S391, D1S1656, D2S441, D10S1248, D22S1045, SE33, Amelogenin and DYS391	Malays	Data in Brief, Elsevier	D1S165 6	This p-value < 0.002 was obtained by divid- ing the standard p-value (0.05) with total number of tested loci (i.e. 21 locus). Similarly, standard significant level for deviation from LD between pair of STR loci (< 0.05) was also adjusted to p < 0.0 0 02 (0.05/231, where 231 is the total combinations of STR loci)
Alicia Borosky and colleagu es (2021)	Allele frequency data for 23 aSTR for different ethnic groups from Republic of Zimbabwe	478 (Individuals from 19 different ethnic groups)	23 (Autosomal STR Loci)	CSF1PO, FGA, TH01, vWA, D1S1656, D2S1338, D2S441, D3S1358, D18S51, D19S433, D5S818, D7S820, D8S1179, D13S317, D16S539, D10S1248, D12S391, D21S11, Penta D, Penta E, D22S1045, TPOX, and SE33.	Zimbab we	Internati onal Journal of Legal Medicin e	SE33	The most polymorphic system was SE33 (GD = 0.9336) Whereas the less one was D13S317 (GD = 0.7084). The DP ranged from 0.9891 (SE33) to 0.8567 (D13S317) with PE values spanning from 0.8683 (SE33) to 0.4571 (D3S1358)
Asmer Aliyeva and colleagu es (2021)	Population genetic data for 21 autosomal STR loci in the Azerbaijani population	467 (Individuals from Baku.)	autosomal loci from the Globalfiler	Globalfiler™ kit	Azerba ijan	Internati onal Journal of Legal Medicin e	TPOX	Expected Heterozygosity HE were seen, with a minimum of 0.637 for TPOX and a maximum of

	using the Globalfiler							0.949 for SE33.
Gasana Paul and colleagu es (2021)	Genetic Polymorphi sm of 24 Autosomal STR in the Population of Rwanda	505 (Unrelated individuals)	24 (Autosomal STR loci)	D3S1358, D13S317, D7S820, D16S539, SE33, D10S1248, D5S818, D21S11, TPOX, D1S1656, D6S1043, D19S433, D22S1045, D8S1179, Penta E, D2S441, D12S391, D2S1338, vWA, Penta D, TH01, D18S51, CSF1PO and FGA.	Rwand a	Biochem ical Genetics	SE33	SE33 presented the highest polymorphism (PIC=0.921) among these 24 loci, whereas D13S317 presented the lowest one (PIC=0.671).
Amine Abdelia and Traki Benhassi ne et al (2019)	Genetic diversity of 15 autosomal STRs in a sample of berbers from Aurès region in the Northeast of Algeria and genetic relationship s with other neighbourin g samples	308 Individuals.	15 Autosomal STR loci	Amelogenin, D3S1358, D19S433, D2S1338, D2S1045, D16S539, D18S51, D1S1656, D10S1248, D2S441, TH01, VWA, D21S11, D12S391, D8S1179 and FGA.	Algeria	Annals of Human Biology	FGA	All loci were highly polymorphic and no significant deviation from HWE was detected.
Apolina ekka et al (2020)	Genetic Polymorphi sm of 15 autosomal STR Loci in population of Chhattisgar h, India.	445 unrelated healthy individuals	15 Autosomal STR loci	D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA TPOX, D18S51, D5S818, FGA	India	Gene Reports Elsevier	"FGA"	The paternity index and cumulative matching probability for the examined loci were found to be 3.7 × 105 and 3.8 × 10–18 respectively. The Power of discrimination and exclusion were detected to be 1 and 0.99999764 respectively.
Jian Liu and colleagu es (2013)	Genetic analysis of 15 STR loci from a Xibe population in Liaoning, Northeast of China	150 unrelated Xibe individuals	15 STR loci	D8S1179, D21S11, D7S820, CSF1PO, D3S1385, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818, FGA	China	Annals of Human Biology	D18S51	Allele frequencies ranging from 0.001 to 0.507. D18S51 had the highest polymorphism (PIC¼0.840) among all 15 STR loci, whereas TPOX had the lowest (PIC¼0.590).
Xiaolon g Han and Anna Shen and their colleagu es (2020)	Genetic diversity of 17 autosomal STR loci in Meizhou Hakka population	638 unrelated healthy individuals	17 Autosomal STR loci.	D2S1338, D19S433, Penta E, Penta D, D5S818, D8S1179, D3S1358, TH01D21S11, D18S51, D7S820, vWA, D13S317, D16S539, CSF1PO,	China	Internati onal Journal of Legal Medicin e	Penta E	Penta E showed the highest values of polymorphism information content (0.9073), expected heterozygosity (0.9147), and

					1			
				TPOX, and FGA				observed heterozygosity (0.9373), whereas TPOX showed the lowest (0.5373, 0.6035, and 0.6082)
Xue Wu and colleagu es(2020)	Genetic polymorphi sms of 20 autosomal STR loci in the Han population of Zhangzhou City, Southeaster n China	1555 Unrelated Han individuals	20 Autosomal STR loci	D3S1358, TH01, D21S11, D18S51, Penta E, D5S818, D13S317, D7S820, D16S539, CSF1PO, Penta D, vWA, D8S1179, TPOX, FGA, D19S433, D12S391, D6S1043, D2S1338, D1S1656	China	Legal Medicin e	Penta E	A total of 262 alleles were observed with the highest allele frequency (0.5521) in TPOX locus.
Lalita and colleagu es (2020)	Genetic variation of 20 Autosomal STRs in "JATS" belonging to Delhi, India.	120 JATS Individuals	20 Autosomal STR loci	D3S1358, TH01, D21S11, D18S51, Penta E, D5S818, D13S317, D7S820, D16S539, CSF1PO, Penta D, vWA , D8S1179, TPOX, FGA, D19S433, D12S391, D6S1043, D2S1338, D1S1656	India	Internati onal Journal of Legal Medicin e	Penta E	The locus "Penta-E" was most polymorphic the value 0.910 and 0.981, respectively. Whereas the locus TPOX was found least polymorphic the value 0.612 and 0.833.
Gasana Paul and colleagu es et al (2021),	Genetic Polymorphi sm of 24 Autosomal STR in the Population of Rwanda	505 unrelated Individuals	24 Autosomal STR loci	D3S1358, D13S317, D7S820, D16S539, SE33, D10S1248, D5S818, D21S11, TPOX, D1S1656, D6S1043, D19S433, D22S1045, D8S1179, Penta E, D2S441, D12S391, D2S1338, vWA, Penta D, TH01, D18S51, CSF1PO and FGA.	Rawan da	Biochem ical Genetics	SE33	SE33 presented the highest polymorphism (PIC=0.921) among these 24 loci, whereas D13S317 presented the lowest one (PIC=0.671).
Badiye et al. (2021)	A study of genomic diversity in populations of Maharashtr a, India. Inferred from 20 autosomal STR markers.	158 unrelated Individuals	20 autosomal STR markers	D3S1358, D1S1656, D6S1043, D13S317, Penta E, D16S539, D18S51, D2S1338, CSF1PO, Penta D, TH01, vWA, D21S11, D7S820, D5S818, TPOX, D8S1179, D12S391, D19S433, FGA.	India	BMC Research Notes	Penta E	Observed heterozygosity viz. 0.690 to 0.918 for the admixed population and 0.696 to 0.942 for the Teli population.
Vivek Sahajpal et al. (2019).	Assessment of Genetic Polymorphi sm at 20 autosomal STR loci in scheduled caste population of Himachal Pradesh,	genetically unrelated individuals (114 males and 101 females)	20 autosomal STR markers	D3S1358, D1S1656, D6S1043, D13S317, Penta E, D16S539, D18S51, D2S1338, CSF1PO, Penta D, TH01, vWA, D21S11, D7S820, D5S818, TPOX, D8S1179, D12S391, D19S433 and FGA)	India	Internati onal Journal of Legal Medicin e	Penta E	Locus Penta E was found to be the most polymorphic and discriminative loci. The combined power of discrimination and the combined power of exclusion were 1 and 0.999.

CONCLUSION:

Based on the literature review encompassing genetic polymorphism studies of autosomal short tandem repeat (STR) loci in the population of Bangladesh, China, Rwanda, Algeria, Azerbaijan, Zimbabwe, Malaysia, Ghana, Pakistan, Italy, Kenya and India, several key conclusions can be drawn:

- 1. Diversity across North Indian Populations:
 - The reviewed studies collectively reveal a significant level of genetic diversity within the North Indian population. This diversity can be attributed to various factors, including historical migrations, intermixing of different ethnic groups, and geographical variations need to more study in Bihar, Jharkhand, Rajasthan, Punjab and Odisha state.
- Utility of Autosomal STRs: Autosomal STR
 markers have proven to be valuable tools for
 assessing genetic diversity and population
 structure in North India. These markers offer
 high discrimination power and are widely
 employed in forensic and anthropological
 studies.
- 3. Regional Variations: While North India is often treated as a homogeneous region, the literature suggests that there are notable genetic variations among different North Indian states and communities. These differences may be influenced by factors such as endogamy, caste, and social practices.
- 4. Forensic Applications: The studies emphasize the importance of autosomal STR markers in forensic investigations. Accurate population-specific allele frequency databases are crucial for forensic DNA analysis in the region, aiding in individual identification and criminal investigations.
- 5. **Historical Insights:** Genetic studies in North India have provided insights into historical events, migrations, and interactions among various populations. These insights contribute

- to our understanding of the complex demographic history of the region.
- 6. Future Research Directions: The literature review suggests a need for continued research in this field, focusing on underrepresented populations, increased marker sets, and more extensive databases. This would enhance our ability to address forensic, anthropological, and medical genetic questions specific to North India.
- 7. The genetic polymorphism studies of autosomal STR loci in North India have revealed a rich tapestry of genetic diversity and historical complexities within the region. These findings have practical applications in forensics and contribute to our broader understanding of human population genetics in this culturally and historically significant part of the world.

REFERENCES:

- Hossain, T., Hasan, M., Mazumder, A. K., Momtaz, P., Sufian, A., Khandaker, J. A., & Akhteruzzaman, S. (2016). Genetic polymorphism studies on 22 autosomal STR loci of the PowerPlex Fusion System in Bangladeshi population. Legal Medicine, 23(4), 4. doi:10.1016/j.legalmed.2016.09.005
- Akhteruzzaman, S., Hasan, M. M., Sufian, A., Momtaz, P., et al. (2018). Genetic Polymorphism of 16 Autosomal STRs Loci of the PowerPlex ESX 17 System in a Population Sample from Bangladesh. Journal of Forensic Science & Criminology, 10(5). doi:10.19080/JFSCI.2018.10.555784
- Hossain, T., Hasan, M. M., Mazumder, A. K., Momtaz, P., Sharmin, T., Sufian, A., Das, S. A., & Akhteruzzaman, S. (2014). Population genetic data on 15 autosomal STR loci in Bangladeshi population. Forensic Science International: Genetics. Advance online publication. doi:10.1016/j.fsigen.2014.04.012
- Hasan, M., Momtaz, P., Hosen, I., Das, S. A., & Akhteruzzaman, S. (2014). Population genetics of 17 Ychromosomal STRs loci in Garo and Santal tribal populations in Bangladesh. Forensic Science International, 14, 98-105. doi:10.1007/s00414-014-0981-5
- Ferdous, A., Ali, M. E., Alam, S., Hasan, M., Hossain, T., & Akhteruzzaman, S. (2010). Allele Frequencies of 10 Autosomal STR Loci from Chakma and Tripura Tribal Populations in Bangladesh. Molecular Biology International, 2010, Article ID 740152.

- doi:10.4061/2010/740152
- Ferdous, A., Ali, M. E., Alam, S., Hasan, M., Hossain, T., & Akhteruzzaman, S. (2009). Forensic evaluation of STR data for the PowerPlexTM 16 System loci in a Bangladeshi population. Legal Medicine, 11(Suppl 1), S405-S407. doi:10.1016/j.legalmed.2009.02.027
- Akhteruzzaman, S., Ferdou, A., Momtaz, P., & Sultana, R. (2012). Forensic evaluation of 11 non-standard STR loci in Bangladeshi population. Legal Medicine, 14(6), 340-343. doi:10.1016/j.legalmed.2012.08.003.
- Hasan, M. M., Rahman, M. H., & Akhteruzzaman, S. (2021). Genetic polymorphism and phylogenetic analysis of 15 autosomal STR markers in the Santal indigenous population of Bangladesh. Bioresearch Communications, 7(2). DOI: 10.3329/brc.v7i2.54375.
- Sufian, A., Hosen, M. I., Fatema, K., Hossain, T., Hasan, M. M., Mazumder, A. K., & Akhteruzzaman, S. (2016). Genetic diversity study on 12 X-STR loci of investigator® Argus X STR kit in Bangladeshi population. International Journal of Legal Medicine, 131(5), 1361-1363. doi:10.1007/s00414-016-1423-7.
- Shrivastava, P., Kaitholia, K., Kumawat, R. K., Dixit, S., Dash, H. R., Srivastava, A., ... Chaubey, G. (2019). Forensic effectiveness and genetic distribution of 23 autosomal STRs included in Verifiler PlusTM multiplex in a population sample from Madhya Pradesh, India. International Journal of Legal Medicine, 134(2), 651-653. doi:10.1007/s00414-019-02179-0.
- Chege, C. W., Kiarie, W. C., Nambati, E. A., Kinyua, J., Lelo, E.. Allele frequencies for 20 autosomal microsatellite loci in the Kenyan population.
- Ghiani, M. E., Mameli, A., Vecchio, C., Francalacci, P., Robledo, R., & Calo, C. M. (Year). Estimating population genetics and forensic efficiency of the GlobalFiler PCR amplification kit in the population of Sardinia (Italy).
- Jilani, A., Nadeem, A., Tahir, M., & Rasool, N. (2016).
 Genetic Analysis of the Saraiki Population Living in Pakistan. Journal of Forensic Sciences, 61(6), 1602-1607.
- 14. Abban, Edward Kofi, Hashom Mohd Hakim, Hussein Omar Khan, Siti Afifah Ismail, Anita Ghansah, Abd Rashid Nur Haslindawaty, Shaharum Shamsuddin, Mohd Yusmaidie Aziz, Geoffrey Keith Chambers, and Hisham Atan Edinur. (2020). Population Dataset for 21 Simple Tandem Repeat Loci in the Akan Population of Ghana. Data in Brief, 30, 105746.
- Abban, E. K., Hashom, M. H., Khan, H. O., Ismail, S. A., Ghansah, A., Adjem David, A., Che Mat, N. F., Chambers, G. K., & Edinur, H. A. (2019). Population Data of 23 Y Chromosome STR Loci for the Five Major Human Subpopulations of Ghana. International Journal of Legal Medicine, 133(6), 1885-1887.
- 16. Hashom Mohd Hakim et al. (2020). Dataset on 21 Autosomal and Two Sex-Determining Short Tandem Repeat Loci in the Kedayan Population in Borneo, Malaysia. Data in Brief, 31, 105909.
- Alicia Borosky et al. (2021). Allele Frequency Data for 23
 Autosomal STRs in Different Ethnic Groups from the Republic of Zimbabwe. International Journal of Legal Medicine
- Asmer Aliyeva et al. (2021). Population Genetic Data for 21 Autosomal STR Loci in the Azerbaijani Population Using the Globalfler™ Kit. International Journal of Legal Medicine
- Gasana Paul et al. (2021). Genetic Polymorphism of 24
 Autosomal STR in the Population of Rwanda.
 International Journal of Legal Medicine.
- Abban, E. Kofi, Hashom, M. Hakim, Hussein, O. Khan, Siti Afifah Ismail, Anita Ghansah, Agyemang Adjem David, Nor Fazila Che Mat, Geoffrey Keith Chambers, & Hisham Atan Edinur. (2019). Population Data of 23 Y Chromosome STR Loci for the Five Major Human Subpopulations of Ghana. International Journal of Legal Medicine, 133(5), 1629-1633.
- 21. Abdeli, A., & Benhassine, T. (2020). Genetic diversity of

- 15 autosomal STRs in a sample of Berbers from Aures region in the Northeast of Algeria and genetic relationships with other neighboring samples. Forensic Science International: Genetics, 46, 102250. doi:10.1080/03014460.2020.1736628
- Ekka, A., Kujur, K., Sirmour, R., Guha, D., Padhy, S. A., Verma, A., ... Shrivastava, P. (2020). Genetic polymorphism of 15 autosomal STR loci in the population of Chhattisgarh, India. Gene Reports, 21, 100883. doi:10.1016/j.genrep.2020.100883
- Aliyeva, A., Gellatly, V., Abbasov, M., Iyengar, A., "Population genetic data for 21 autosomal STR loci in the Azerbaijani population using the Globalfler™ kit," Forensic Science, Medicine, and Pathology (2021).
- Han, X., Shen, A., Yao, T., Wu, W., Wang, X., Sun, H., & Liu, C. (2020). Genetic diversity of 17 autosomal STR loci in Meizhou Hakka population. International Journal of Legal Medicine, 134(5), 1899-1900.
- Ocampos, M., Fernandes, R. C., Latorre, A. F. S., da Silva, C. M. D., Korndorfer, F. P., Giamarusti, A. C., & Menezes, M. E. (2009). 15 STR loci frequencies in the population from Santa Catarina, Southern Brazil. Forensic Science International: Genetics, 3, e129–e131. doi:10.1016/j.fsigen.2008.10.010.
- Vu, T. T. H., Do, T. T. M., Nguyen, T. H., & Luyen, Q. H. (2021). Allele frequencies of 23 short tandem repeat loci in the Vietnamese Kinh population. Forensic Science International: Reports, 3, 100210. doi:10.1016/j.fsir.2021.100210.
- 27. Jian Liu, Shu-yin Li, Jiao-yang Yin, Wei Zhang, Bing Gao, Li Guo, and Rong Qi (2013). Genetic analysis of 15 STR loci from a Xibe population in Liaoning, Northeast of China.
- Xiaolong Han, Anna Shen, Ting Yao, Weibin Wu, Xiaohan Wang, Hongyu Sun, & Chao Liu. (2020). Genetic diversity of 17 autosomal STR loci in Meizhou Hakka population. Forensic Science, Medicine, and Pathology, 16(3), 376-378.
- Xue Wu, Ji-long Zheng, Yin Lou, Xiao-han Wei, Bao-jie Wang, Jun Yao. (2020). Genetic polymorphisms of 20 autosomal STR loci in the Han population of Zhangzhou City, Southeastern China. Legal Medicine, 46, 101726.
- Lalita, K. P. S. Kushwaha, Tanya Chauhan, R. K. Kumawat, Shivani Dixit, Pankaj Shrivastava. (2020).
 Genetic variation of 20 autosomal STRs in Jats belonging to Delhi, India. International Journal of Legal Medicine, 134(1), 1-3.
- R. K. Kumawat, Pankaj Shrivastava, Divya Shrivastava, G. K. Mathur, Shivani Dixit. (2020). Genomic blueprint of the population of Rajasthan based on autosomal STR markers. International Journal of Legal Medicine, 134(1), 1.3
- Gasana Paul et al. (2021). Genetic Polymorphism of 24
 Autosomal STR in the Population of Rwanda.
 International Journal of Legal Medicine.
- C. Vullo et al. (2016). Genetic polymorphism of 22 autosomal STR markers in Paraguay.
- Badiye, A., Kapoor, N., Kumawat, R. K., Dixit, S., Mishra, A., Dixit, A., ... Shrivastava, P. (2021). A study of genomic diversity in populations of Maharashtra, India, inferred from 20 autosomal STR markers. Forensic Science International: Genetics, 51, 102468. doi:10.1016/j.fsigen.2021.102468.
- Sahajpal, V., Singh, A., Thakur, M., Sharma, A., Chandra, K., & Kumar, S. (2019). Assessment of genetic polymorphism at 20 autosomal STR loci in scheduled caste population of Himachal Pradesh. International Journal of Legal Medicine, 134(2), 511-512. doi:10.1007/s00414-019-02204-z.
- Sahajpal, V., Singh, A., Thakur, M., Sharma, A., Chandra, K., & Sharma, S. (2019). Evaluation of genetic polymorphism at 20 autosomal STR loci in Rajput population of Himachal Pradesh, India. International Journal of Legal Medicine, 134(2), 529-530.

- doi:10.1007/s00414-019-02198-8.
- Dash, H. R., Shrivastava, P., & Das, S. (2019). Expediency
 of Tetra- and Pentanucleotide Repeat Autosomal STR
 Markers for DNA Typing in Central Indian Population.
 Proceedings of the National Academy of Sciences, India
 Section B: Biological Sciences, 1-7. doi:10.1007/s40011019-01141-9.
- Qiu-Ling Liu, Zi-Xiang Chen, Chu-Guang Chen, De-Jian Lu, Genetic Polymorphism of 22 Autosomal STR Markers in a Han Population of Southern China, Forensic Science International: Genetics, 2016.
- Forensic Science International: Genetics Supplement Series, https://doi.org/10.1016/j.fsigss.2019.09.073
- 40. AsPac J. Mol. Biol. Biotechnol. 2021 Vol. 29 (2): 75-84
- Jienan Li & Lagabaiyila Zha (2021). "Forensic characteristics and genetic structure of 18 autosomal STR loci in the Sierra Leone population." Asia-Pacific Journal of Molecular Biology and Biotechnology. DOI: 10.35118/apjmbb.2021.029.2.08.
- Gauraw Kumar, Tanya Chauhan, K. P. S. Kushwaha, Shivani Dixit, and R. K. Kumawat (2020). "Estimating genetic polymorphism in Bhuiyan population of eastern India using 20 autosomal STR loci." International Journal of Legal Medicine. DOI: 10.1007/s00414-020-02391-0.
- 43. Houssein Khodjet-el-Khil, Karima Fadhlaoui-Zid, Leonor Gusma o, Cı'ntia Alves, Amel Benammar-Elgaaied, and Anto'nio Amorim (2012). "Allele frequencies for 15 autosomal STR markers in the Libyan population." Forensic Science International: Genetics. DOI: 10.1016/j.fsigen.2011.10.006.
- 44. Imad Hadi, Mohammed Abdullah, Aamera Jaber, and Cheah Yoke (2014). "Genetic variation of twenty autosomal STR loci and evaluate the importance of these loci for forensic genetic purposes." Forensic Science International: Genetics. DOI: 10.1016/j.fsigen.2014.02.008.
- Vivek Sahajpal, Abhishek Singh, Mukesh Thakur, Arun Sharma, Deepika Bhandari, Lalit Kumar Sharma, Kailash Chandra, and Satish Kumar (2020). "Genetic polymorphism of 20 autosomal short tandem repeats (STRs) in Himachal Pradesh population, India." International Journal of Legal Medicine. DOI: 10.1007/s00414-020-02254-8.
- 46. Mohd Nor Azlan Rashid, Naji Arafat Mahat, Hussein Omar Khan, Roswanira Abdul Wahab, Hasmerya Maarof, Dzulkiflee Ismail, Aedrianee Reeza Alwi, and Sharifah Nany Rahayu Karmilla Syed Hassan (2020). "Population data of 21 autosomal STR loci in Malaysian populations for human identification." International Journal of Legal Medicine. DOI: 10.1007/s00414-020-02279-z.
- R.K. Kumawat et al. (2020). "Molecular diversity of 23 Y-STR genetic markers in the population of Rajasthan, India." Meta Gene. DOI: 10.1016/j.mgene.2020.100694.
- Pankaj Shrivastava et al. (2015). "Genetic variation at 15 autosomal STR loci in Bhil tribal population of Central India." Annals of Human Biology. DOI: 10.3109/03014460.2015.1014419.
- Rajesh Kumar, Anand Kumar, R K Kumawat, et al. "Allelic Distribution in Population of Rajasthan, India; Inferred from 22 Autosomal STRs included in Powerplex Fusion 5C System." International Journal of Forensic Science. 2020;3(2):89–95.
- Vincent Castella, Joëlle Gervaix, and Diana Hall. "DIP– STR: Highly Sensitive Markers for the Analysis of Unbalanced Genomic Mixtures." Human Mutation 34:644–654, 2013. DOI: 10.1002/humu.22280.
- Muhammad Adnan Shan, Claus Børsting, and Niels Morling. "Forensic application and genetic diversity of 21 autosomal STR loci in five major population groups of Pakistan." International Journal of Legal Medicine, 2020. DOI: 10.1007/s00414-020-02393-y.
- Dan Wen, Zedeng Yang, Shule Sun, Kureshi Aliye, ZEYE Moutanou Modeste Judes, Lingmei Lan, Pingli Xie, Junxin Xiao, and Lagabaiyila Zha. "Genetic polymorphisms of

- new 22 autosomal STR loci in the Mongolian ethnic group." International Journal of Legal Medicine, 2019. DOI: 10.1007/s00414-019-02111-3.
- 53. Dijana Takić Miladinov, Perica Vasiljević, Dejan Šorgić, Eva Podovšovnik Axelsson, and Aleksandra Stefanović. "Allele frequencies and forensic parameters of 22 autosomal STR loci in population of 983 individuals from Serbia and comparison with 24 other populations." Annals of Human Biology, 2020. DOI: 10.1080/03014460.2020.1846784.
- Shrivastava, P., Jain, T., Trivedi, V. B., & Stefanović, A. (2016). A genetic portrait of Oraon Indian tribe drawn with 15 autosomal and 17 Y chromosomal STR markers. Annals sof Human Biology, DOI: 10.1080/03014460.2020.1846784.