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ABSTRACT

Magnetic Noise is one of the most critical artifacts in medical magnetic
resonance imaging (MRI) acquisition, very often leading to deterioration
of the image quality and clinical diagnosis. The existing Gaussian and
wavelet filters performance in noise reduction of MRI images has not
been satisfactory. Deep learning has recently been introduced as an
efficient way to solve this problem by attenuating noise without harming
image structures. The study presents an elaborate examination of various
deep learning techniques for MRI noise removal. Particularly, the
emphasis is on three types of deep learning networks: convolutional
neural networks (CNN), generative adversarial networks (GAN), and
autoencoder. The review scrutinizes these methods network architectures
and loss functions and also their performance through quantitative
metrics like PSNR, SSIM, and MSE. Research works have identified deep
learning methods as extremely efficient in solving MRI noise removal
issues which can pave the way for future research and clinical noise
reduction applications. The comparative analysis presented in this paper
offers the clinician and the researcher's decision-making process a
valuable reference in choosing models depending on the clinical needs,
computational resources, and noise reduction performance. Additionally,
it facilitates the design of deep learning-based noise reduction models
with high clinical applicability and fidelity.

©2025 The authors
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themselves, a type of noise: random granular
patterns, shadows, and distortions. Image noise

distributed under the terms of the Creative
Commons Attribution (CC BY NC), which permits
unrestricted use, distribution, and reproduction in
any medium, as long as the original authors and
source are cited. No permission is required from
the authors or the
publishers.(https://creativecommons.org/licenses/b
y-nc/4.0/)

1. INTRODUCTION:

MRI (Magnetic Resonance Imaging) is one of the
significant medical diagnostic tools. The capability
to non-invasively peer in-depth inside the human
body, at a level of granularity that is nearly always
limited only by the technology of the scanner itself
(specifically at the soft tissue level — brain, muscle,
organs, etc.) has been an indispensable part of
medicine for decades *. However, these images are
not always ideal. Throughout the history of MRI,
one of the biggest challenges of the technology has
been a certain grainy appearance of the images
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makes it more difficult to see small structures, to
segment areas of the image clearly (especially
when using automated, Al-assisted tools) 2, and can
even lead to incorrect analysis or interpretation in
some cases. Noise is usually the worst in so-called
accelerated or fast scans (necessary, for example,
for pediatric or emergency cases), low-field-
strength (i.e. more portable or lower-cost) scans,
and, obviously, in low-dose imaging.

In both clinical practice and the MRI literature,
numerous traditional methods are employed by

practitioners to address these noisy images.
Median, mean, Gaussian, bilateral, or median
filtering;  Fourier or Wavelet transforms,

anisotropic diffusion, or other smoothing methods
are among the most popular or common 2. While all
of these filters and methods reduce noise, they do it
at a cost to the image itself. Edges are blurred, fine
details are washed out, and important but small
features (tumor margin, brain lesion, nerve fiber,
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etc.) may be lost. Other methods, such as
anisotropic diffusion or wavelet transforms, have
been developed to better preserve edges while
removing noise and graininess. These methods
improved on the quality of denoising 4, but still
required fine-tuning of many manual parameters,
and had inconsistent performance across different
patients and imaging conditions.

Visual noise on MRI images is not a mere
inconvenience. It can lead to missed or
misidentified abnormalities, lower accuracy of
automated analysis or processing tools, and cause
incorrect interpretation even by experienced
radiologists. The most common sources of noise in
MRI include thermal noise (random electrical
activity, effectively electronic static), Rician noise
(distortion in brightness of image areas), and
motion artifacts from patient movement during
scanning 5. For example, brain MRIs used to
diagnose and monitor diseases like multiple
sclerosis can be particularly affected by these noise
sources. Traditional image filters can blur a lesion
edge and limit its measurement accuracy. While
traditional filters made a strong effort in noise
reduction, they were ultimately not nuanced or
adaptable enough for, clinical or research purposes,
especially when image noise was high 8. Enter the
era of deep learning. With the recent explosion in
CNNs (Convolutional Neural Networks) and other
AI/ML methods for image processing and analysis,
the field of denoising is no longer satisfied with
mere noise reduction 7; the goal is high-quality
images, period. The best way to create high-quality
images is to train a machine learning model on
thousands of such images, which it then “learns” by
itself. For example, a model can be fed both high-
quality images and corresponding noisy versions,
with the goal of learning the differences between
the two and then generating the high-quality image
from scratch when given a noisy input 8.

CNNs have shown strong denoising capabilities for
several reasons. They are adept at image pattern
recognition, so a trained CNN can more easily
identify what is noise and what is part of the tissue
structure. However, while a CNN may be better at
preserving edges than older filtering methods,
CNNs tend to oversmooth images themselves. For
example, the textures of certain anatomical features
may be removed, which can then affect subsequent
image segmentation or quantitative analysis by
either human or automated means. For this reason,
a new generation of models is based on a variation
of the Al system called a Generative Adversarial
Network, or GAN. A GAN is a type of Al system
that pits two neural network models against each
other during training. One model, called the
generator, attempts to produce outputs as close to
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the real (input) data as possible. The other model,
called the discriminator, is an image analysis model
that tries to distinguish the real data from the
generator output. Over the course of many
thousands of images (training examples), the
generator model is updated (using machine learning
algorithms) to be harder for the discriminator to
“catch.” This process creates a GAN model that, at
test time, is good at not only producing realistic
looking images, but also good at preserving
anatomical details in its outputs. GANs are often
used for image synthesis, e.g. training an Al model
on thousands of real photos of cats, and then
making the model generate fake but still realistic
images of cats. In the case of image denoising, the
generator has the same job: producing a denoised
output given a noisy input °. However, instead of
the discriminator also being an image generator, it
is a more traditional image analysis model. The
generator is updated through training based on two
loss functions: the discriminator loss, and an image
reconstruction loss (the difference between the
generator output and the input clean image). The
discriminator network effectively acts as a judge of
image quality, adding the constraint of anatomical
realism to the loss function of the generator. When
we visualize the discriminator network output
during training. The discriminator model is not
only used as a guide or “score” for the generator
output quality °, but also as a visualization of the
training data itself. Discriminator outputs can, in a
sense, tell us what is being preserved and what is
being lost in a denoised image. While older image
filters may have “cleaned” the image, the cost of
that cleaning was a loss of anatomical information,
i.e. tissue textures, patient variability, and overall
realistic appearance. The new generation of
denoising tools are based on Al models. These
methods are trained on data, rather than optimized
by a single human % The field of deep learning
(DL) has matured to the point where CNNs can
outperform traditional denoising methods by a
significant margin. Hybrid CNN-GAN models that
“talk back™” to the generator, in effect forcing it to
make better denoised images, are giving us
denoising tools that are powerful yet nuanced. They
have been tested and evaluated on thousands of real
patient images, and do not have the problem of
having to be retrained or re-tuned for each new
patient or scan 2. GAN-based models have been
shown to preserve better certain vital structures,
like the exact shape of a tumor boundary, than
other methods in low-dose imaging (needed for,
e.g. faster scans or avoiding contrast agents).
CNN+GAN models also have the advantage of
being much more robust to different types of MRI
noise, rather than requiring a specific denoising
algorithm for a particular source of noise.
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The field of MRI denoising is now in the process of
finding the limit of how clean these methods can
make an image, and what the new generation of Al
models are truly capable of as these models
continue to develop *3, there will likely be more
and more emphasis on speed, accuracy, and
reducing the amount of training data required for a
model to work on new, unseen data. In the future,
these models may be able also to process
unlabelled data (images for which no cleaned
version exists), allowing them to not only denoise
but also extract anatomical, physiological, or other
information directly from noisy data.

The presented study project aims to manage the
limitations of conventional MRI denoising methods
and to develop an innovative hybrid deep learning
framework for effective noise reduction in MRI
images. The project will explore the possibility of
Convolutional Neural Networks (CNNs) and
Generative Adversarial Networks (GANSs) in
improving MRI image quality by diminishing
various types of noise such as Gaussian, Rician,
and motion artifacts. The presented research will
improve the diagnostic accuracy and clinical utility
of MRI by denoising the images without losing any

Table 1 Dataset collection details
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anatomical attributes.

2. MATERIALS AND METHODS:

This study was conducted using a combination of
publicly available MRI datasets, simulated noise
models, and high-performance computational tools
to develop and evaluate the proposed CNN-GAN
hybrid denoising architecture.

2.1 Dataset Description:

This study utilizes publicly available MRI datasets
from the BrainWeb Simulated Brain Database and
the IXI Dataset, which include both high-resolution
and noisy MRI scans across different anatomical
planes (T1l-weighted, T2-weighted, and PD-
weighted). The Brain Web dataset provides
simulated images with controlled levels of Rician
noise (e.g., 3%, 5%, 7%), which are ideal for
benchmarking denoising models. Meanwhile, the
IX1 Dataset offers real clinical images acquired
from multiple scanners and hospitals, introducing
real-world variability in terms of patient
movement, scanner noise, and intensity in
homogeneities.

Dataset Type Modality Resolution Noise Type Purpose
Brain Web | Simulated T1,T2,PD 181x217x181 Rician (3-9%) Controlled benchmarking
IXI Real clinical T1,T2, MRA 256x256 Mixed (Gaussian + Motion) Generalization validation

a. Noise Simulation:

To systematically evaluate the model’s robustness,
artificial noise was also added to selected clean
images. Gaussian and Rician noise were
synthetically introduced using standard equations:

Gaussian Noise:
Inoisy = Igiean + N(O, 62)
Rician Noise:
Inoisy = \/(Iclean + N(O, 02))2 + N(0,02)?

where ¢ represents the standard deviation of the
noise distribution [6]. This allowed us to simulate
varying levels of signal-to-noise ratio (SNR) and
validate model performance under both synthetic
and natural noise.

b. Proposed Model Architecture:

The presented MRI denoising framework is
established on a hybrid deep learning architecture
that integrates the spatial feature extraction abilities
of a Convolutional Neural Network (CNN) with the
texture-preserving power of a  Generative
Adversarial Network (GAN). This synergy allows
the model to not only remove noise effectively but
also reconstruct naturalistic and structurally
accurate MRI images.

The model consists of two primary components:
Generator (G) — A U-Net-based CNN that learns to
map noisy MRI images to their denoised versions.
Discriminator (D) — A PatchGAN network that
distinguishes between real (ground truth) and fake
(denoised) images at a patch level to preserve local
textures.

The training process is adversarial: the generator
attempts to produce denoised images that fool the
discriminator, while the discriminator gets better at
telling the difference between real and generated
images.

Generator Network — U-Net Based CNN

The generator of the proposed hybrid denoising
approach operates a U-Net-based convolutional
neural network (CNN) architecture. The U-Net
architecture, initially designed for biomedical
image segmentation, is a famous alternative due to
its effective encoder-decoder structure. In this
architecture, the encoder (or contracting path)
consists of convolutional layers that learn to extract
contextual information from the noisy input MRI
image through downsampling operations. The
decoder (or expanding path), on the other hand,
gradually upsamples the feature maps while
incorporating spatial information through skip
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connections from the encoder layers. Each layer in
the encoder incorporates two convolutional layers
(with a kernel size of 3x3), followed by batch
normalisation and ReLU activation, and a max-
pooling layer for downsampling.

The most abstract and high-level features are
captured at the bottleneck of the network. In the
decoder, transposed convolutions are used to
upsample the feature maps, and the corresponding
encoder layers' feature maps are concatenated
through skip connections to recover fine-grained
structural details lost during downsampling. This
allows the network to learn both the global and
local patterns of noise and image structures.

To generate a denoised output image with pixel
intensities normalized between 0 and 1, the final
layer of the network incorporates a 1x1 convolution
followed by a sigmoid activation function. This U-
Net-based CNN is well-suited for medical image
denoising assignments because it can effectively
remove noise while maintaining critical anatomical
structures in the images, such as the boundaries of
tumors or small lesions. Besides, batch
normalization can help to stabilize training and
improve the network's generalization performance
across datasets with different noise features. The
table below provides an overview of the operations
and architecture at each stage of the generator
network.

Table 2 : Architecture at each stage of the generator
network
Stage Operation Output Size
Input Noisy MRI image (grayscale) 256x256x1
Encoder 2xConv(3x3, 64) —» BN — 128x128x64
Block 1 ReLU — MaxPooling(2x2)
Encoder 2xConv(3x3, 128) - BN — 64x64%x128
Block 2 ReLU — MaxPooling(2x2)
Encoder 2xConv(3x3, 256) — BN — 32x32x256
Block 3 ReLU — MaxPooling(2x2)
Encoder 2xConv(3x3, 512) —» BN — 16x16x512
Block 4 ReLU — MaxPooling(2x2)
Bottleneck | 2xConv(3x3, 1024) — BN — 16x16x1024
ReLU
Decoder TransConv(2x2, 512) + 32x32x512
Block 1 Concat(Enc4) — 2xConv(3x3,
512) —» BN — ReLU
Decoder TransConv(2x2, 256) + 64x64x256
Block 2 Concat(Enc3) — 2xConv(3x3,
256) — BN — ReLU
Decoder TransConv(2x2, 128) + 128x128x128
Block 3 Concat(Enc2) — 2xConv(3x3,
128) — BN — ReLU
Decoder TransConv(2x2, 64) + 256x256x64
Block 4 Concat(Encl) — 2xConv(3x3,
64) - BN — ReLU
Output Conv(1x1, 1) — Sigmoid 256x256x1
Layer

i. Discriminator (D) — A PatchGAN:
The discriminator in the offered hybrid model uses
a PatchGAN architecture. It concentrates on telling
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the difference between real (ground truth) and
generated (denoised) images at the patch level,
instead of judging the entire image at once. Unlike
traditional discriminators that give a single output
for the whole of the image, PatchGAN checks
small overlapping patches (usually 70x70)
throughout the image and classifies each patch as
genuine or fake. This method is very good at
preserving local textures, fine edges, and
anatomical details in MRI images. These features
are often lost in conventional denoising or global
discriminator methods. By enforcing realism at the
patch level, the PatchGAN discriminator pushes the
generator to create outputs that not only reduce
noise but also keep structural authenticity in each
area of the image.

Convolutional Denoised
Layers Image

Fig. 1: Architecture of the generator network (U-Net based
CNN)

Noisy Image

Fig. 1 illustrates a multi-stage process of the hybrid
CNN-GAN denoising framework, which is
organized and sequential, similar to a clinical
enhancement pipeline driven by data. The CNN-
based spatial learning, integrated with the GAN-
based adversarial optimization, guarantees not only
quantitative accuracy but also visual realism. Such
a merged system is capable of disentangling the
MRI from Gaussian and Rician noise sources while
maintaining the contrast of the anatomical
structures which is a prerequisite for clinical-grade
MRI reconstruction.

The architecture was designed for specific image
denoising tasks. It can learn both high-level and
low-level features to provide maximum denoising
capability while preserving the original details of
the input image. CNNs usually have an odd number
of convolutional layers, typically 17, each with 3x3
filters and using padding to fit the input. The final
layer produces the residual noise, which is
subtracted from the noisy input image to create the
denoised output. CNN-based models offer the
advantage of being efficient for real-time
implementation. They are simple and can be
applied in clinical setups.

2.3.3 Autoencoder Structure:

A different model commonly used for denoising is
the autoencoder. It uses its encoder-decoder
structure to learn compressed representations and
create clean images from noisy inputs. This model
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has been improved to preserve specific features and
keep as much detail as possible. The autoencoder
consists of a symmetrical encoder-decoder structure
that reduces the dimensionality in the middle. The
decoder then reconstructs the image.

Encoder & ‘% _____________________________________ becoder
|
|
+
Conv. + Batch Conv. + Batch
Norm + Rel.U Norm + ReLU

Y
Upsampling -- *

! ﬂ Upsampling
p H
N
t
- U
Skip Connections

Fig. 2 : Auto encoder image denoising process *

1x1Cony
+Sigmold

Max
Pooling

Max

Pooling Output

In the design of an autoencoder for image
denoising, the encoder includes a series of
convolutional layers along with down sampling
operations to reduce the image into a simpler form.
The decoder then rebuilds the image using a series
of up sampling layers that mirror the encoder’s
setup. Skip connections between matching layers in
the encoder and decoder help keep important
spatial details during the encoding and decoding
process. The loss function usually combines mean
squared error (MSE) with perceptual losses to make
sure the denoised images are not only correct but
also visually appealing. Autoencoders are relatively
simple models that effectively preserve key features
from the input, making them excellent for
denoising tasks.

c.Training and Validation Setup:

The training of deep-learning models for MRI
denoising requires carefully selected loss functions
and robust validation strategies. In this study,
different models utilize specific loss functions to
optimise denoising performance.

20 60 a0
Epochs

Fig. 3 : Loss Convergence Curves During Training

100

In Fig. 3chart shows the changes in the losses of the
generator, discriminator, and validation sets over
100 training epochs of the proposed hybrid CNN—
GAN MRI denoising framework. The generator
loss (blue curve) is going down all the time as the
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network gets the ability to produce good denoised
images that are very close to the clean ground-truth
images. The discriminator loss (orange curve) is
changing radically at the beginning of the training
epochs because the adversarial interaction with the
generator is going on but after about 50 epochs it
stabilizes, therefore, balanced adversarial learning
is achieved. The validation loss (green dashed line)
is very smooth and continuous in its decrease, thus,
the model is confirmed to be able to generalize to
new MRI data without overfitting.

d. Loss Functions:

To train the CNN-GAN hybrid model for MRI
denoising, we created a composite loss function
that balances fidelity, structure preservation, and
perceptual realism. The goal is to help the generator
produce denoised images that look like the clean
target images at the pixel level while also keeping
the anatomical structure and local texture. We
achieve this by combining three types of loss: Mean
Squared Error (MSE), Structural Similarity Index
(SSIM) loss, and Adversarial loss (GAN loss). Each
type captures a different part of image quality. MSE
focuses on pixel accuracy, and SSIM measures
perceived image similarity, including luminance,
contrast, and structure. GAN loss encourages the
generator to produce realistic outputs that can
chump the discriminator. The total loss function for
the generator is the weighted sum of the individual
components:

Ltotar = M- Lusp + A2. (1 = SSIM) + A3. Lgan
The weights A;,A, and A; were chosen through
experiments to find a balance between smoothness
and structural integrity. In our experiments, values
of
2,-0.6,A, = 0.3 and A; = 0.1 provided the best
performance. This composite loss ensures that the
generator reduces noise while avoiding over-
smoothing and maintaining the diagnostic quality
of the MRI scans.

i. Loss Functions Optimization:

The success of deep learning-based denoising
models depends heavily on the choice of loss
functions and optimisation strategies. In this study,
different models utilise tailored loss functions
designed to balance noise reduction with preserving
crucial image details. Mean Squared Error (MSE)
Loss: MSE is the primary loss function used in the
CNN and Autoencoder models. It minimizes the
pixel-wise difference between the denoised output
and the ground truth clean image. Mathematically,
it is expressed as:

n
1 .
MSE = (yi-5,)’
i=1

where y; represents the true pixel value and '571.
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represents the predicted pixel value. MSE is
effective for reducing overall noise but may
sometimes lead to over smoothing.

Perceptual Loss: For models like GANs, perceptual
loss is introduced alongside traditional pixel-wise
losses. Perceptual loss measures the difference in
high-level feature representations between the
denoised output and the ground truth image,
encouraging the model to preserve fine details and
textures. The features are typically extracted using
a pre-trained deep network (e.g., VGG-19) and
computed as:

!
Perceptual Loss = Z“Q)i(y) -0: M| %
i=1

where @; represents the feature maps at layer i of
the pre-trained network.

Adversarial Loss: In the GAN setup, the adversarial
loss plays a critical role in training the generator. It
is formulated as:

mGin max ExPgatac [logD(x)] + E;p,g, [log(1 —

D(G@))]

where G represents the generator and D represents
the discriminator. This loss encourages the
generator to produce denoised images that are
indistinguishable from the real clean images. The
models are optimized using stochastic gradient
descent with the Adam optimizer, configured with a
learning rate of 10™* and momentum parameters
B1=0.9 and [(,=0.999. Early stopping is
implemented based on the validation loss to prevent
overfitting.

Cross-Validation Approach:

To ensure the strength and general usefulness of the
models, we use a 5-fold cross-validation approach.
The dataset is split into five parts. Each fold serves
as the validation set once, while the other four folds
are used for training in each round. This method
helps us evaluate the models thoroughly, as we
average the performance metrics like PSNR and
SSIM across all folds. We use stratified sampling in
each fold to keep noise levels consistent in both the
training and validation sets. This provides a fair
evaluation under various noise conditions, which is
essential for real-world clinical applications. The
effects from cross-validation play a key role in
selecting hyperparameters and adjusting the
models. By combining cross-validation with strong
optimization methods and suitable loss functions,
the models gain effective and general performance
in denoising MRI images, making them fit for
clinical use.

3. RESULT AND DISCUSSION:

The performance of the sampled denoising models
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is further assessed by combining quantitative and
qualitative metrics. Quantitative metrics include
Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index Measure (SSIM), and Mean
Squared Error (MSE). These metrics assess the
accuracy of a denoised image with respect to the
original clean image. PSNR is a single metric that
quantifies image quality by summarising the level
of noise introduced. SSIM assesses structural
similarity, and is often considered to measure more
perceptually relevant parameters such as contrast
and texture than PSNR. MSE, which compares the
pixel-wise error differences between a clean and a
denoised image is one of the simplest metrics, but
also one of the most useful as any small pixel-wise
differences may have a large impact on perception
when looking at the image as a whole. While these
quantitative image quality in the same manner as a
visual mortal making a perceptual judgement, we
believe that these metrics strike a good balance
between numerical accuracy and clinically
meaningful image quality. The comitative in nature.

Table 3 : Evaluation Metrics for Comparative Analysis of
MRI Denoising Methods

Denoising PSS | M | Visual Feature
Method N S |S Quality | Preservatio
R | E n

M
Gaussian 25 | 0.]0. Modera | Moderate
Filtering .5 7 |00 | te

5125
Wavelet 27 | 0. | 0. Good Good
Transform 2 7 |00

8 |21
CNN 30 | 0.]0. Very Very Good
(DnCNN) 5 |8 | 00 | Good

5 12
GAN (cGAN) | 32 | 0. | O. Excelle | Excellent

8 | 00 | nt

8 | 09
Auto encoder 29 | 0. ] 0. Very Good

.8 |8 | 00 | Good

2 15
Proposed 33 |0.]0. Outstan | Excellent
HybridCNN- | .4 | 9 | 00 | ding
GAN 0 |07

These examinations focus on visual quality and
feature preservation. These images are visually
inspected for artifacts and blurring by imaging and
diagnostics experts to ensure that crucial
anatomical structures, which are the essence for are
retained in the denoised images. The models were
evaluated against measures discussed above,
namely PSNR, SSIM, MSE, visual quality and
feature preservation. These results clearly show the
gap between old and new technology, traditional
and DL with respect to noise reduction and
retention of anatomical features.
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3% Rician noise 5% Riclan noise

9% Rictan noise

Tybrid

denoised output

Fig. 4 : Clinical Evaluation — Denoised Brain MRI under
Different Noise Levels.

The fig. 4 presents a comparative visual evaluation
of the proposed denoising techniques across
varying levels of Rician noise (3%, 5%, and 9%) in
brain MRI images. Each column represents a
different noise level, while the rows display the
corresponding noisy input, CNN-denoised output,
and Hybrid CNN-GAN denoised output. The
proposed hybrid model demonstrates superior noise
suppression and anatomical preservation across all
noise intensities. At 3% noise, subtle structures
such as cortical folds and ventricular boundaries
remain crisp. At 5% noise, the hybrid approach
maintains structural continuity without introducing
over-smoothing. At the highest noise level (9%), it
effectively restores fine tissue contrast and
delineation, outperforming the conventional CNN
in both texture fidelity and edge preservation.

In  evaluating MRI  denoising  methods,
computational efficiency was crucial. Classical
methods like Gaussian filtering and wavelet
transforms, though fast and suitable for real-time
applications, often fall short in strict diagnostic
scenarios due to limited denoising capability. Deep-
learning models offer a better balance, with the
CNN model (DnCNN) providing an optimal
compromise between speed and effectiveness. The
GAN model, although computationally heavier,
delivers superior performance in high-noise
situations. Meanwhile, the autoencoder, moderately
efficient, requires careful tuning to prevent feature
loss, highlighting the trade-offs between
computational demand and image quality in
medical imaging.

4. CONCLUSION:

This paper compares traditional and deep-learning
MRI denoising methods. It concludes that deep-

learning models, like GANs, CNNs, and
autoencoders, perform better than Gaussian
filtering and Wavelet Transformation. These

advanced models are especially effective at keeping
detailed anatomical information and handling
complex noise. However, they require more
computational power. Depending on clinical needs,
one can choose between GANSs for high-detail, less
time-consuming tasks, CNNs for a good balance of
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speed and quality, and autoencoders for low-
computation, moderate denoising tasks. The next
steps will involve creating hybrid models that
combine different methods and customizing them
for effective clinical use.

5. Availability of Data and Materials:

All datasets analyzed during the current study are
publicly accessible. The BrainWeb dataset can be
obtained from https://brainweb.bic.mni.mcgill.ca/ ,
and the IXI dataset from https:/brain-
development.org/ixi-dataset/.

The trained models, experimental code, and
additional materials developed during this study
can be obtained from the corresponding author
upon reasonable request.
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