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ABSTRACT 
Magnetic Noise is one of the most critical artifacts in medical magnetic 

resonance imaging (MRI) acquisition, very often leading to deterioration 

of the image quality and clinical diagnosis. The existing Gaussian and 

wavelet filters performance in noise reduction of MRI images has not 

been satisfactory. Deep learning has recently been introduced as an 

efficient way to solve this problem by attenuating noise without harming 

image structures. The study presents an elaborate examination of various 

deep learning techniques for MRI noise removal. Particularly, the 

emphasis is on three types of deep learning networks: convolutional 

neural networks (CNN), generative adversarial networks (GAN), and 

autoencoder. The review scrutinizes these methods network architectures 

and loss functions and also their performance through quantitative 

metrics like PSNR, SSIM, and MSE. Research works have identified deep 

learning methods as extremely efficient in solving MRI noise removal 

issues which can pave the way for future research and clinical noise 

reduction applications. The comparative analysis presented in this paper 

offers the clinician and the researcher's decision-making process a 

valuable reference in choosing models depending on the clinical needs, 

computational resources, and noise reduction performance. Additionally, 

it facilitates the design of deep learning-based noise reduction models 

with high clinical applicability and fidelity. 

 

Keywords 
Magnetic Resonance Imaging, 

Deep-learning techniques, 

Image denoising, Clinical 

image enhancement. 

 
©2025 The authors 

This is an Open Access article  

distributed under the terms of the Creative 

Commons Attribution (CC BY NC), which permits 

unrestricted use, distribution, and reproduction in 

any medium, as long as the original authors and 

source are cited. No permission is required from 

the authors or the 

publishers.(https://creativecommons.org/licenses/b

y-nc/4.0/) 

 

1. INTRODUCTION: 
MRI (Magnetic Resonance Imaging) is one of the 

significant medical diagnostic tools. The capability 

to non-invasively peer in-depth inside the human 

body, at a level of granularity that is nearly always 

limited only by the technology of the scanner itself 

(specifically at the soft tissue level – brain, muscle, 

organs, etc.) has been an indispensable part of 

medicine for decades 1. However, these images are 

not always ideal. Throughout the history of MRI, 

one of the biggest challenges of the technology has 

been a certain grainy appearance of the images 

themselves, a type of noise: random granular 

patterns, shadows, and distortions. Image noise 

makes it more difficult to see small structures, to 

segment areas of the image clearly (especially 

when using automated, AI-assisted tools) 2, and can 

even lead to incorrect analysis or interpretation in 

some cases. Noise is usually the worst in so-called 

accelerated or fast scans (necessary, for example, 

for pediatric or emergency cases), low-field-

strength (i.e. more portable or lower-cost) scans, 

and, obviously, in low-dose imaging. 

 

In both clinical practice and the MRI literature, 

numerous traditional methods are employed by 

practitioners to address these noisy images. 

Median, mean, Gaussian, bilateral, or median 

filtering; Fourier or Wavelet transforms, 

anisotropic diffusion, or other smoothing methods 

are among the most popular or common 3. While all 

of these filters and methods reduce noise, they do it 

at a cost to the image itself. Edges are blurred, fine 

details are washed out, and important but small 

features (tumor margin, brain lesion, nerve fiber, 
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etc.) may be lost. Other methods, such as 

anisotropic diffusion or wavelet transforms, have 

been developed to better preserve edges while 

removing noise and graininess. These methods 

improved on the quality of denoising 4, but still 

required fine-tuning of many manual parameters, 

and had inconsistent performance across different 

patients and imaging conditions. 

 

Visual noise on MRI images is not a mere 

inconvenience. It can lead to missed or 

misidentified abnormalities, lower accuracy of 

automated analysis or processing tools, and cause 

incorrect interpretation even by experienced 

radiologists. The most common sources of noise in 

MRI include thermal noise (random electrical 

activity, effectively electronic static), Rician noise 

(distortion in brightness of image areas), and 

motion artifacts from patient movement during 

scanning 5. For example, brain MRIs used to 

diagnose and monitor diseases like multiple 

sclerosis can be particularly affected by these noise 

sources. Traditional image filters can blur a lesion 

edge and limit its measurement accuracy. While 

traditional filters made a strong effort in noise 

reduction, they were ultimately not nuanced or 

adaptable enough for, clinical or research purposes, 

especially when image noise was high 6. Enter the 

era of deep learning. With the recent explosion in 

CNNs (Convolutional Neural Networks) and other 

AI/ML methods for image processing and analysis, 

the field of denoising is no longer satisfied with 

mere noise reduction 7; the goal is high-quality 

images, period. The best way to create high-quality 

images is to train a machine learning model on 

thousands of such images, which it then “learns” by 

itself. For example, a model can be fed both high-

quality images and corresponding noisy versions, 

with the goal of learning the differences between 

the two and then generating the high-quality image 

from scratch when given a noisy input 8. 

 

CNNs have shown strong denoising capabilities for 

several reasons. They are adept at image pattern 

recognition, so a trained CNN can more easily 

identify what is noise and what is part of the tissue 

structure. However, while a CNN may be better at 

preserving edges than older filtering methods, 

CNNs tend to oversmooth images themselves. For 

example, the textures of certain anatomical features 

may be removed, which can then affect subsequent 

image segmentation or quantitative analysis by 

either human or automated means. For this reason, 

a new generation of models is based on a variation 

of the AI system called a Generative Adversarial 

Network, or GAN. A GAN is a type of AI system 

that pits two neural network models against each 

other during training. One model, called the 

generator, attempts to produce outputs as close to 

the real (input) data as possible. The other model, 

called the discriminator, is an image analysis model 

that tries to distinguish the real data from the 

generator output. Over the course of many 

thousands of images (training examples), the 

generator model is updated (using machine learning 

algorithms) to be harder for the discriminator to 

“catch.” This process creates a GAN model that, at 

test time, is good at not only producing realistic 

looking images, but also good at preserving 

anatomical details in its outputs. GANs are often 

used for image synthesis, e.g. training an AI model 

on thousands of real photos of cats, and then 

making the model generate fake but still realistic 

images of cats. In the case of image denoising, the 

generator has the same job: producing a denoised 

output given a noisy input 9. However, instead of 

the discriminator also being an image generator, it 

is a more traditional image analysis model. The 

generator is updated through training based on two 

loss functions: the discriminator loss, and an image 

reconstruction loss (the difference between the 

generator output and the input clean image). The 

discriminator network effectively acts as a judge of 

image quality, adding the constraint of anatomical 

realism to the loss function of the generator. When 

we visualize the discriminator network output 

during training. The discriminator model is not 

only used as a guide or “score” for the generator 

output quality 10, but also as a visualization of the 

training data itself. Discriminator outputs can, in a 

sense, tell us what is being preserved and what is 

being lost in a denoised image. While older image 

filters may have “cleaned” the image, the cost of 

that cleaning was a loss of anatomical information, 

i.e. tissue textures, patient variability, and overall 

realistic appearance. The new generation of 

denoising tools are based on AI models. These 

methods are trained on data, rather than optimized 

by a single human 11. The field of deep learning 

(DL) has matured to the point where CNNs can 

outperform traditional denoising methods by a 

significant margin. Hybrid CNN-GAN models that 

“talk back” to the generator, in effect forcing it to 

make better denoised images, are giving us 

denoising tools that are powerful yet nuanced. They 

have been tested and evaluated on thousands of real 

patient images, and do not have the problem of 

having to be retrained or re-tuned for each new 

patient or scan 12. GAN-based models have been 

shown to preserve better certain vital structures, 

like the exact shape of a tumor boundary, than 

other methods in low-dose imaging (needed for, 

e.g. faster scans or avoiding contrast agents). 

CNN+GAN models also have the advantage of 

being much more robust to different types of MRI 

noise, rather than requiring a specific denoising 

algorithm for a particular source of noise. 
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The field of MRI denoising is now in the process of 

finding the limit of how clean these methods can 

make an image, and what the new generation of AI 

models are truly capable of as these models 

continue to develop 13, there will likely be more 

and more emphasis on speed, accuracy, and 

reducing the amount of training data required for a 

model to work on new, unseen data. In the future, 

these models may be able also to process 

unlabelled data (images for which no cleaned 

version exists), allowing them to not only denoise 

but also extract anatomical, physiological, or other 

information directly from noisy data. 

 

The presented study project aims to manage the 

limitations of conventional MRI denoising methods 

and to develop an innovative hybrid deep learning 

framework for effective noise reduction in MRI 

images. The project will explore the possibility of 

Convolutional Neural Networks (CNNs) and 

Generative Adversarial Networks (GANs) in 

improving MRI image quality by diminishing 

various types of noise such as Gaussian, Rician, 

and motion artifacts. The presented research will 

improve the diagnostic accuracy and clinical utility 

of MRI by denoising the images without losing any 

anatomical attributes.  

 

2. MATERIALS AND METHODS: 
This study was conducted using a combination of 

publicly available MRI datasets, simulated noise 

models, and high-performance computational tools 

to develop and evaluate the proposed CNN-GAN 

hybrid denoising architecture. 

 

2.1 Dataset Description: 

This study utilizes publicly available MRI datasets 

from the BrainWeb Simulated Brain Database and 

the IXI Dataset, which include both high-resolution 

and noisy MRI scans across different anatomical 

planes (T1-weighted, T2-weighted, and PD-

weighted). The Brain Web dataset provides 

simulated images with controlled levels of Rician 

noise (e.g., 3%, 5%, 7%), which are ideal for 

benchmarking denoising models. Meanwhile, the 

IXI Dataset offers real clinical images acquired 

from multiple scanners and hospitals, introducing 

real-world variability in terms of patient 

movement, scanner noise, and intensity in 

homogeneities. 

 
Table 1 Dataset collection details 

Dataset Type Modality Resolution Noise Type Purpose 

Brain Web Simulated T1, T2, PD 181×217×181 Rician (3–9%) Controlled benchmarking 

IXI Real clinical T1, T2, MRA 256×256 Mixed (Gaussian + Motion) Generalization validation 

 

a. Noise Simulation: 

To systematically evaluate the model’s robustness, 

artificial noise was also added to selected clean 

images. Gaussian and Rician noise were 

synthetically introduced using standard equations: 

 

Gaussian Noise:  

𝐼𝑛𝑜𝑖𝑠𝑦 = 𝐼𝑐𝑙𝑒𝑎𝑛 + 𝑁(0, 𝜎2) 

Rician Noise: 

𝐼𝑛𝑜𝑖𝑠𝑦 = √(𝐼𝑐𝑙𝑒𝑎𝑛 + 𝑁(0, 𝜎2))2 + 𝑁(0, 𝜎2)2 

 

where 𝜎 represents the standard deviation of the 

noise distribution [6]. This allowed us to simulate 

varying levels of signal-to-noise ratio (SNR) and 

validate model performance under both synthetic 

and natural noise. 

 

b. Proposed Model Architecture: 

The presented MRI denoising framework is 

established on a hybrid deep learning architecture 

that integrates the spatial feature extraction abilities 

of a Convolutional Neural Network (CNN) with the 

texture-preserving power of a Generative 

Adversarial Network (GAN). This synergy allows 

the model to not only remove noise effectively but 

also reconstruct naturalistic and structurally 

accurate MRI images. 

 

The model consists of two primary components: 

Generator (G) – A U-Net-based CNN that learns to 

map noisy MRI images to their denoised versions. 

Discriminator (D) – A PatchGAN network that 

distinguishes between real (ground truth) and fake 

(denoised) images at a patch level to preserve local 

textures. 

 

The training process is adversarial: the generator 

attempts to produce denoised images that fool the 

discriminator, while the discriminator gets better at 

telling the difference between real and generated 

images. 

 

Generator Network – U-Net Based CNN  

The generator of the proposed hybrid denoising 

approach operates a U-Net-based convolutional 

neural network (CNN) architecture. The U-Net 

architecture, initially designed for biomedical 

image segmentation, is a famous alternative due to 

its effective encoder-decoder structure. In this 

architecture, the encoder (or contracting path) 

consists of convolutional layers that learn to extract 

contextual information from the noisy input MRI 

image through downsampling operations. The 

decoder (or expanding path), on the other hand, 

gradually upsamples the feature maps while 

incorporating spatial information through skip 
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connections from the encoder layers. Each layer in 

the encoder incorporates two convolutional layers 

(with a kernel size of 3×3), followed by batch 

normalisation and ReLU activation, and a max-

pooling layer for downsampling.  

 

The most abstract and high-level features are 

captured at the bottleneck of the network. In the 

decoder, transposed convolutions are used to 

upsample the feature maps, and the corresponding 

encoder layers' feature maps are concatenated 

through skip connections to recover fine-grained 

structural details lost during downsampling. This 

allows the network to learn both the global and 

local patterns of noise and image structures. 

 

To generate a denoised output image with pixel 

intensities normalized between 0 and 1, the final 

layer of the network incorporates a 1×1 convolution 

followed by a sigmoid activation function. This U-

Net-based CNN is well-suited for medical image 

denoising assignments because it can effectively 

remove noise while maintaining critical anatomical 

structures in the images, such as the boundaries of 

tumors or small lesions. Besides, batch 

normalization can help to stabilize training and 

improve the network's generalization performance 

across datasets with different noise features. The 

table below provides an overview of the operations 

and architecture at each stage of the generator 

network. 

 
Table 2 : Architecture at each stage of the generator 

network  

Stage Operation Output Size 

Input Noisy MRI image (grayscale) 256×256×1 

Encoder 
Block 1 

2×Conv(3×3, 64) → BN → 
ReLU → MaxPooling(2×2) 

128×128×64 

Encoder 
Block 2 

2×Conv(3×3, 128) → BN → 
ReLU → MaxPooling(2×2) 

64×64×128 

Encoder 
Block 3 

2×Conv(3×3, 256) → BN → 
ReLU → MaxPooling(2×2) 

32×32×256 

Encoder 
Block 4 

2×Conv(3×3, 512) → BN → 
ReLU → MaxPooling(2×2) 

16×16×512 

Bottleneck 2×Conv(3×3, 1024) → BN → 
ReLU 

16×16×1024 

Decoder 
Block 1 

TransConv(2×2, 512) + 
Concat(Enc4) → 2×Conv(3×3, 
512) → BN → ReLU 

32×32×512 

Decoder 
Block 2 

TransConv(2×2, 256) + 
Concat(Enc3) → 2×Conv(3×3, 
256) → BN → ReLU 

64×64×256 

Decoder 
Block 3 

TransConv(2×2, 128) + 
Concat(Enc2) → 2×Conv(3×3, 
128) → BN → ReLU 

128×128×128 

Decoder 
Block 4 

TransConv(2×2, 64) + 
Concat(Enc1) → 2×Conv(3×3, 
64) → BN → ReLU 

256×256×64 

Output 
Layer 

Conv(1×1, 1) → Sigmoid 256×256×1 

 

i. Discriminator (D) – A PatchGAN: 

The discriminator in the offered hybrid model uses 

a PatchGAN architecture. It concentrates on telling 

the difference between real (ground truth) and 

generated (denoised) images at the patch level, 

instead of judging the entire image at once. Unlike 

traditional discriminators that give a single output 

for the whole of the image, PatchGAN checks 

small overlapping patches (usually 70×70) 

throughout the image and classifies each patch as 

genuine or fake. This method is very good at 

preserving local textures, fine edges, and 

anatomical details in MRI images. These features 

are often lost in conventional denoising or global 

discriminator methods. By enforcing realism at the 

patch level, the PatchGAN discriminator pushes the 

generator to create outputs that not only reduce 

noise but also keep structural authenticity in each 

area of the image. 

 

 
Fig. 1: Architecture of the generator network (U-Net based 

CNN) 

 

Fig. 1 illustrates a multi-stage process of the hybrid 

CNN–GAN denoising framework, which is 

organized and sequential, similar to a clinical 

enhancement pipeline driven by data. The CNN-

based spatial learning, integrated with the GAN-

based adversarial optimization, guarantees not only 

quantitative accuracy but also visual realism. Such 

a merged system is capable of disentangling the 

MRI from Gaussian and Rician noise sources while 

maintaining the contrast of the anatomical 

structures which is a prerequisite for clinical-grade 

MRI reconstruction. 

 

The architecture was designed for specific image 

denoising tasks. It can learn both high-level and 

low-level features to provide maximum denoising 

capability while preserving the original details of 

the input image. CNNs usually have an odd number 

of convolutional layers, typically 17, each with 3x3 

filters and using padding to fit the input. The final 

layer produces the residual noise, which is 

subtracted from the noisy input image to create the 

denoised output. CNN-based models offer the 

advantage of being efficient for real-time 

implementation. They are simple and can be 

applied in clinical setups. 

 

2.3.3 Autoencoder Structure: 

A different model commonly used for denoising is 

the autoencoder. It uses its encoder-decoder 

structure to learn compressed representations and 

create clean images from noisy inputs. This model 
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has been improved to preserve specific features and 

keep as much detail as possible. The autoencoder 

consists of a symmetrical encoder-decoder structure 

that reduces the dimensionality in the middle. The 

decoder then reconstructs the image. 

 

 
Fig. 2 : Auto encoder image denoising process 14 

 

In the design of an autoencoder for image 

denoising, the encoder includes a series of 

convolutional layers along with down sampling 

operations to reduce the image into a simpler form. 

The decoder then rebuilds the image using a series 

of up sampling layers that mirror the encoder’s 

setup. Skip connections between matching layers in 

the encoder and decoder help keep important 

spatial details during the encoding and decoding 

process. The loss function usually combines mean 

squared error (MSE) with perceptual losses to make 

sure the denoised images are not only correct but 

also visually appealing. Autoencoders are relatively 

simple models that effectively preserve key features 

from the input, making them excellent for 

denoising tasks. 

 

c. Training and Validation Setup: 

The training of deep-learning models for MRI 

denoising requires carefully selected loss functions 

and robust validation strategies. In this study, 

different models utilize specific loss functions to 

optimise denoising performance. 

 

 
Fig. 3 : Loss Convergence Curves During Training 

 

In Fig. 3chart shows the changes in the losses of the 

generator, discriminator, and validation sets over 

100 training epochs of the proposed hybrid CNN–

GAN MRI denoising framework. The generator 

loss (blue curve) is going down all the time as the 

network gets the ability to produce good denoised 

images that are very close to the clean ground-truth 

images. The discriminator loss (orange curve) is 

changing radically at the beginning of the training 

epochs because the adversarial interaction with the 

generator is going on but after about 50 epochs it 

stabilizes, therefore, balanced adversarial learning 

is achieved. The validation loss (green dashed line) 

is very smooth and continuous in its decrease, thus, 

the model is confirmed to be able to generalize to 

new MRI data without overfitting. 

 

d. Loss Functions: 

To train the CNN-GAN hybrid model for MRI 

denoising, we created a composite loss function 

that balances fidelity, structure preservation, and 

perceptual realism. The goal is to help the generator 

produce denoised images that look like the clean 

target images at the pixel level while also keeping 

the anatomical structure and local texture. We 

achieve this by combining three types of loss: Mean 

Squared Error (MSE), Structural Similarity Index 

(SSIM) loss, and Adversarial loss (GAN loss). Each 

type captures a different part of image quality. MSE 

focuses on pixel accuracy, and SSIM measures 

perceived image similarity, including luminance, 

contrast, and structure. GAN loss encourages the 

generator to produce realistic outputs that can 

chump the discriminator. The total loss function for 

the generator is the weighted sum of the individual 

components: 

 

𝐿𝑡𝑜𝑡𝑎𝑙 =  λ1. 𝐿𝑀𝑆𝐸 + λ2. (1 − 𝑆𝑆𝐼𝑀) + λ3. 𝐿𝐺𝐴𝑁 

The weights λ1, λ2 𝑎𝑛𝑑 λ3 were chosen through 

experiments to find a balance between smoothness 

and structural integrity. In our experiments, values 

of   

λ1=0.6, λ2 = 0.3 𝑎𝑛𝑑 λ3 = 0.1 provided the best 

performance. This composite loss ensures that the 

generator reduces noise while avoiding over-

smoothing and maintaining the diagnostic quality 

of the MRI scans. 

 

i. Loss Functions Optimization: 

The success of deep learning-based denoising 

models depends heavily on the choice of loss 

functions and optimisation strategies. In this study, 

different models utilise tailored loss functions 

designed to balance noise reduction with preserving 

crucial image details. Mean Squared Error (MSE) 

Loss: MSE is the primary loss function used in the 

CNN and Autoencoder models. It minimizes the 

pixel-wise difference between the denoised output 

and the ground truth clean image. Mathematically, 

it is expressed as: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦⏞

𝑖
)

2
𝑛

𝑖=1

 

where 𝑦𝑖 represents the true pixel value and 𝑦⏞
𝑖
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represents the predicted pixel value. MSE is 

effective for reducing overall noise but may 

sometimes lead to over smoothing. 

 

Perceptual Loss: For models like GANs, perceptual 

loss is introduced alongside traditional pixel-wise 

losses. Perceptual loss measures the difference in 

high-level feature representations between the 

denoised output and the ground truth image, 

encouraging the model to preserve fine details and 

textures. The features are typically extracted using 

a pre-trained deep network (e.g., VGG-19) and 

computed as: 

𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 𝐿𝑜𝑠𝑠 = ∑‖∅𝑖(𝑦) − ∅𝑖(𝑦⏞)‖

𝑙

𝑖=1

2
2

 

where ∅𝑖 represents the feature maps at layer 𝑖 of 

the pre-trained network. 

 

Adversarial Loss: In the GAN setup, the adversarial 

loss plays a critical role in training the generator. It 

is formulated as: 

min
𝐺

max
𝐷

𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)
[log 𝐷(𝑥)] +  𝐸𝑧~𝑃𝑧(𝑧)

[log(1 −

𝐷(𝐺(𝑧)))]  

 

where 𝐺 represents the generator and 𝐷 represents 

the discriminator. This loss encourages the 

generator to produce denoised images that are 

indistinguishable from the real clean images. The 

models are optimized using stochastic gradient 

descent with the Adam optimizer, configured with a 

learning rate of 10−4 and momentum parameters 

𝛽1=0.9 and 𝛽2=0.999. Early stopping is 

implemented based on the validation loss to prevent 

overfitting. 

 

Cross-Validation Approach: 

To ensure the strength and general usefulness of the 

models, we use a 5-fold cross-validation approach. 

The dataset is split into five parts. Each fold serves 

as the validation set once, while the other four folds 

are used for training in each round. This method 

helps us evaluate the models thoroughly, as we 

average the performance metrics like PSNR and 

SSIM across all folds. We use stratified sampling in 

each fold to keep noise levels consistent in both the 

training and validation sets. This provides a fair 

evaluation under various noise conditions, which is 

essential for real-world clinical applications. The 

effects from cross-validation play a key role in 

selecting hyperparameters and adjusting the 

models. By combining cross-validation with strong 

optimization methods and suitable loss functions, 

the models gain effective and general performance 

in denoising MRI images, making them fit for 

clinical use. 

 

3. RESULT AND DISCUSSION: 
The performance of the sampled denoising models 

is further assessed by combining quantitative and 

qualitative metrics. Quantitative metrics include 

Peak Signal-to-Noise Ratio (PSNR), Structural 

Similarity Index Measure (SSIM), and Mean 

Squared Error (MSE). These metrics assess the 

accuracy of a denoised image with respect to the 

original clean image. PSNR is a single metric that 

quantifies image quality by summarising the level 

of noise introduced. SSIM assesses structural 

similarity, and is often considered to measure more 

perceptually relevant parameters such as contrast 

and texture than PSNR. MSE, which compares the 

pixel-wise error differences between a clean and a 

denoised image is one of the simplest metrics, but 

also one of the most useful as any small pixel-wise 

differences may have a large impact on perception 

when looking at the image as a whole. While these 

quantitative image quality in the same manner as a 

visual mortal making a perceptual judgement, we 

believe that these metrics strike a good balance 

between numerical accuracy and clinically 

meaningful image quality. The comitative in nature.  

 
Table 3 : Evaluation Metrics for Comparative Analysis of 

MRI Denoising Methods 

Denoising 

Method 

PS

N

R  

S

S

I

M 

M

S

E 

Visual 

Quality 

Feature 

Preservatio

n 

Gaussian 

Filtering 

25

.5 

0.

7

5 

0.

00

25 

Modera

te 

Moderate 

Wavelet 

Transform 

27

.2 

0.

7

8 

0.

00

21 

Good Good 

CNN 
(DnCNN) 

30
.5 

0.
8

5 

0.
00

12 

Very 
Good 

Very Good 

GAN (cGAN) 32 0.
8

8 

0.
00

09 

Excelle
nt 

Excellent 

Auto encoder 29
.8 

0.
8

2 

0.
00

15 

Very 
Good 

Good 

Proposed 

Hybrid CNN–
GAN 

33

.4 

0.

9
0 

0.

00
07 

Outstan

ding 

Excellent  

 

These examinations focus on visual quality and 

feature preservation. These images are visually 

inspected for artifacts and blurring by imaging and 

diagnostics experts to ensure that crucial 

anatomical structures, which are the essence for are 

retained in the denoised images. The models were 

evaluated against measures discussed above, 

namely PSNR, SSIM, MSE, visual quality and 

feature preservation. These results clearly show the 

gap between old and new technology, traditional 

and DL with respect to noise reduction and 

retention of anatomical features. 



 Journal of Molecular Science 

Volume 35 Issue 4, Year of Publication 2025, Page 1308-1315    

   DoI-10.004687/1000-9035.2025.174 

 

1314 

 
Fig. 4 : Clinical Evaluation — Denoised Brain MRI under 

Different Noise Levels. 

 

The fig. 4 presents a comparative visual evaluation 

of the proposed denoising techniques across 

varying levels of Rician noise (3%, 5%, and 9%) in 

brain MRI images. Each column represents a 

different noise level, while the rows display the 

corresponding noisy input, CNN-denoised output, 

and Hybrid CNN–GAN denoised output. The 

proposed hybrid model demonstrates superior noise 

suppression and anatomical preservation across all 

noise intensities. At 3% noise, subtle structures 

such as cortical folds and ventricular boundaries 

remain crisp. At 5% noise, the hybrid approach 

maintains structural continuity without introducing 

over-smoothing. At the highest noise level (9%), it 

effectively restores fine tissue contrast and 

delineation, outperforming the conventional CNN 

in both texture fidelity and edge preservation. 

 

In evaluating MRI denoising methods, 

computational efficiency was crucial. Classical 

methods like Gaussian filtering and wavelet 

transforms, though fast and suitable for real-time 

applications, often fall short in strict diagnostic 

scenarios due to limited denoising capability. Deep-

learning models offer a better balance, with the 

CNN model (DnCNN) providing an optimal 

compromise between speed and effectiveness. The 

GAN model, although computationally heavier, 

delivers superior performance in high-noise 

situations. Meanwhile, the autoencoder, moderately 

efficient, requires careful tuning to prevent feature 

loss, highlighting the trade-offs between 

computational demand and image quality in 

medical imaging. 

 

4. CONCLUSION: 
This paper compares traditional and deep-learning 

MRI denoising methods. It concludes that deep-

learning models, like GANs, CNNs, and 

autoencoders, perform better than Gaussian 

filtering and Wavelet Transformation. These 

advanced models are especially effective at keeping 

detailed anatomical information and handling 

complex noise. However, they require more 

computational power. Depending on clinical needs, 

one can choose between GANs for high-detail, less 

time-consuming tasks, CNNs for a good balance of 

speed and quality, and autoencoders for low-

computation, moderate denoising tasks. The next 

steps will involve creating hybrid models that 

combine different methods and customizing them 

for effective clinical use. 

 

5. Availability of Data and Materials: 

All datasets analyzed during the current study are 
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obtained from https://brainweb.bic.mni.mcgill.ca/ , 
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development.org/ixi-dataset/. 

 

The trained models, experimental code, and 

additional materials developed during this study 

can be obtained from the corresponding author 

upon reasonable request. 
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